Mathematical analysis of the MCTDHF.
Claude Bardos,
Université Denis Diderot,
Laboratoire Jacques Louis Lions
Wolfgang Pauli Institute Vienna
Joint work with Isabelle Catto, Norbert Mauser, Saber Trabelsi and in cooperation with ArminScrini.

\(N\)-body time dependent Schrödinger equation, and density. Binary interaction, \(N\) large but fixed and \(\hbar\) fixed.

\[
i\partial_t \psi(X_N, t) = -\frac{1}{2} \Delta \psi(X_N, t) + \sum_{1 \leq j < k \leq n} V(|x_j - x_k|) \psi(X_N, t).
\]

\(X_N = (x_1, x_2, \ldots, x_N) \in \mathbb{R}^{3N}\), \(i\partial_t \psi = H \psi\),

\[
\int_{\mathbb{R}^{3N}} |\psi(X_N, t)|^2 dX = 1.
\]

\(E(\psi) = (H \psi, \psi) = \int_{\mathbb{R}^{3N}} (H \psi(X_N, t), \psi(X_N, t)) dX_N = \int_{\mathbb{R}^{3N}} (H \psi(X_N, 0), \psi(X_N, 0)) dX_N\);

Fermions

\((\sigma \psi)(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(N)}) = (-1)^{\sigma} \psi(x_1, x_2, \ldots, x_N)\)

\(D = \psi(X_N, t) \otimes \psi(Y_N, t), D_N \sigma = \sigma D_N\), Trace \(D = 1\), \(i\partial_t D(X_N, t) = [H, D]\).
Slaters determinants and MCHF Ansatz.

Hartree Fock:

\[1 \leq k \leq K = N, \phi_k(x), (\phi_{k_1}, \phi_{k_2}) = \delta_{k_1, k_2} \]

\[\tilde{\Psi}_N(x_1, \ldots, x_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_1(x_1) & \phi_1(x_2) & \cdots & \phi_1(x_N) \\ \phi_2(x_1) & \phi_2(x_2) & \cdots & \phi_2(x_N) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_N(x_1) & \phi_N(x_2) & \cdots & \phi_N(x_N) \end{vmatrix}. \]
The MCTDHF Ansatz

\[K \gg N, 1 \leq k \leq K, L^2(\mathbb{R}^3) \text{ or } L^2(\Omega), r = C^{(K)}_N, \]
\[\Phi = (\phi_1, \ldots, \phi_K) \in L^2(\Omega)^K, (\phi_{k_1}, \phi_{k_2}) = \delta_{k_1, k_2} \]
\[\sigma \in \Sigma_{N,K}, \sigma : \{1, 2, \ldots, N\} \mapsto \{1, 2, \ldots, N\}, \sigma(1) < \sigma(2) < \ldots < \sigma(N) \]
\[\{C = (c_\sigma) : \sum_\sigma |c_\sigma|^2 = 1\} \]
\[\mathcal{F}_{N,K}(\Omega) = \{(C, \Phi)\} \subset S_{\ell^2(r)} \otimes L^2(\Omega)^K \]
\[\pi : \mathcal{F}_{N,K} \mapsto L^2(\mathcal{\Omega}^N) \]
\[\Psi = \pi(C, \Phi) = \sum_{\sigma \in \Sigma_{N,K}} c_\sigma \Phi_\sigma(x_1, \ldots, x_N). \]
\[\Phi_\sigma(x_1, \ldots, x_N) = \frac{1}{\sqrt{N!}} \det(\phi_\sigma(j)(x_i)) \int_{\Omega_N} \Phi_\sigma(X_N)\Phi_\tau(X_N)dX_N = \delta_{\sigma, \tau}. \]
Basic Marginals

For an operator \(D = D(X_N, Y_N) \) in \(L^2(\Omega^N) \) commuting with transposition define the partial trace:

\[
[D]:n = \binom{N}{n} \int_{\Omega^{N-n}} D(X_n, Z_n^N; Y_n, Z_n^N) dZ_n^N.
\]

The mapping \((C, \Phi) \mapsto [\Psi \otimes \overline{\Psi}]:n\) is continuous from \(\mathcal{F}_{N,K}(\Omega) \) (with its natural topolgy) into the space of trace class operators in \(L^2(\Omega^n) \). In particular one has:

\[
[\Psi \otimes \Psi]:2(x_1, y_1, x_2, y_2) = \sum_{ipjq} \gamma_{ipjq} \phi_i(x_1) \phi_p(x_2) \overline{\phi}_j(y_1) \overline{\phi}_q(y_2)
\]

\[
[\Psi \otimes \Psi]:1(x_1, y_1) = \sum_{ij} \gamma_{ij} \phi_i(x_1) \overline{\phi}_j(y_1)
\]

\[
\gamma_{ipjq} = 0 \text{ if } i = p \text{ or } j = q \text{ else }
\]

\[
\gamma_{ipjq} = \sum_{\sigma, \tau \{i,p\} \in \sigma \{j,q\} \in \tau \setminus \{i,p\} = \tau \setminus \{j,q\}} (-1)_i^\sigma (-1)_j^\tau c_\sigma \overline{c}_\tau
\]

\[
\gamma_{ij} = \sum_{i \in \sigma, j \in \tau; \{\sigma \setminus i\} = \tau \setminus j} (-1)_i^\sigma (-1)_j^\tau c_\sigma \overline{c}_\tau
\]
Γ = \{γ_{ij}\}, \Gamma = \{γ_{ipjq}\} γ_{ij} = \sum_p γ_{ipjp}; \text{trace}(\Gamma) = N, \text{trace}(\Gamma) = \frac{N(N - 1)}{2}.

0 \leq γ_1 \leq γ_2 \ldots \leq γ_K \leq 1, \text{ eigenvalues of } \Gamma.

Full rank hypothesis $0 < γ_1 \iff \text{Rank}([Ψ \otimes Ψ]_1) = K$.

$\mathcal{F}^{FR}_{N,K}(Ω) = \{(C, Φ)\} \text{ Rank } ([Ψ \otimes Ψ]_1) = K \text{ is open.}$

Under the full rank hypothesis given

$(C_1, Φ_1), (C_2, Φ_2), \pi((C_1, Φ_1)) = \pi((C_2, Φ_2))$ there is a unique unitary transform U such that $(C_2, Φ_2) = U(C_1, Φ_1)$.

$\mathcal{F}^{FR}_{N,K}(Ω)/U \simeq π(\mathcal{F}^{FR}_{N,K}(Ω))$. A fiber bundle.

$U = (U, U)$

$U : (\phi_1^1, \phi_2^1, \ldots, \phi_K^1) \mapsto (\phi_1^2, \phi_2^2, \ldots, \phi_K^2)$,

$U_{σ,τ}^* = \det (U_σ(i), τ(j))$.

Singapore November 2007
Correlation, Non Freeness

\[\text{Cor}(\Psi) = -Tr([\Psi \otimes \Psi]:_1 \log([\Psi \otimes \Psi]:_1 + Tr(1 - [\Psi \otimes \Psi]:_1) \log(1 - [\Psi \otimes \Psi]:_1) \right) + \text{Tr}(1 - [\Psi \otimes \Psi]:_1) \log(1 - [\Psi \otimes \Psi]:_1) \right] \]

\[\text{Cor}(\Psi) = -\sum_{i=1}^{K} \left(\gamma_i \log(\gamma_i) + (1 - \gamma_i) \log(1 - \gamma_i) \right) \]

The correlation vanishes if and only if \(\Psi \) is a single Slater determinant. It reaches its maximum for:

\[\Psi = \sum_{I_p} \frac{1}{\sqrt{k+1}} \Phi_p, \quad I_p = \{Np + 1, \ldots, N(p + 1)\}, \quad p = 0, \ldots, k \]

All the orbitals carry the same contribution to the wave function.
The working equations

\[\psi(X_N, t) = \sum_{\sigma} c_{\sigma}(t) \phi_{\sigma}(X_N, t), \]

\[i \frac{d}{dt} c_{\sigma}(t) = \langle \left(\sum_{1 \leq i < j \leq N} V(x_i - x_j) \psi \right) \phi_{\sigma} \rangle, \]

\[i \frac{\partial \phi(t, x)}{\partial t} = -\frac{1}{2} \Delta \phi(t, x) + \]

\[\Gamma(t)^{-1} (I - P_{\phi}) \left(2 \int_{\Omega^2} V(x, z) [\psi \otimes \psi]_2 (x, z, y, z) \phi(y) dy dz \right), \]

\[2 \int_{\Omega^2} V(x, z) [\psi \otimes \psi]_2 (x, z, y, z) \phi(y) dy dz = (I - P_{\phi}) ([\nabla_{\phi} \psi]^* V \psi). \]
Testing the multi-configuration time-dependent Hartree–Fock method

Jürgen Zanghellini, Markus Kitzler, Thomas Brabec, and Armin Scrinzi

\[H(x, y; t) = -\frac{1}{2}(\partial_x^2 + \partial_y^2) + \frac{\Omega^2}{2}(x^2 + y^2) + \frac{1}{\sqrt{(x - y)^2 + a^2}} + (x + y)\mathcal{E}_0 \sin(\omega t). \]

Figure 1. Electron density \(\rho(x, y; 0) \) for the ground-state wavefunction and an increasing number of configurations \(\eta \). (\(\eta = \infty \) refers to the numerically exact solution.) The result for 15 coincides with the exact result within the resolution of the plot.

Figure 2. Probability of being in the ground state \(|\langle \Psi_0(x, y; 0) | \Psi_0(x, y; t) \rangle|^2 \) for an increasing number of configurations \(\eta \) (\(\eta = \infty \) refers to the numerically exact solution) in the presence of an electric field of strength \(\mathcal{E}_0 = 1 \) and frequency \(\omega = 8 \Omega \). The result for \(\eta = 15 \) coincides with the exact result within the resolution of the plot.
Main issues

- Is the problem well posed?
- Does it defines a local flow on $\mathcal{F}_{N,K}^{F,R}(\Omega)$?
- Does it conserves energy $\mathcal{E}(\Psi) = \frac{1}{2}(H\Psi, \Psi)$?

$$\mathcal{E}(\Psi) = \frac{1}{2} \int_{\Omega}^{N} |\nabla_{X_N} \Psi(X_N)|^2 dX_N + \frac{N(N - 1)}{2} \int_{\Omega}^{N} V(x_1 - x_2)|\Psi(X_N)|^2 dX_N
= \text{trace}(-\frac{1}{2}\Delta[\Psi \otimes \Psi]:1) + \int_{\Omega^2} V(x_1 - x_2)[\Psi \otimes \Psi]:2(x_1, x_2, x_1, x_2)dx_1dx_2
= \frac{1}{2} \int_{\Omega} (\Gamma(t)\nabla \Phi, \nabla \Phi)dx + \sum_{i:pjq} \gamma_{ipjq} \int_{\Omega^2} V(x - y)\phi_i(x)\phi_p(y)\phi_j(x)\phi_q(y)dx dy .$$

- The invertibility of the density matrix $\Gamma(t)$ being an important issue, is it possible to give sufficient conditions implying the global in time invertibility of this matrix?
- How good is the approximation.

Singapore November 2007
• For bounded potential the structure of the working equation implies with a Cauchy Lipschitz theorem well posedness in $S_{\ell^2(r)} \otimes L^2(\Omega)^K$. Furthermore with the operator $(I - P_\Phi)$ the orthogonality of the ϕ_k is preserved and finally by continuity the local invertibility of $\Gamma(t)$ is also preserved.

• Analysis with the Coulomb potential requires conservation of energy. For this issues and the next ones use gauge transformation!
Gauge transformation and variational principle

Introduce the unitary matrix:

\[U(0) = Id, \quad i \frac{dU}{dt} = -U(t)M(t), \quad \text{with} \quad (M(t))_{ij} = -\frac{1}{2} (\Delta \phi_i(t), \phi_j(t)) \]

Under the transformation which preserves the fiber

\[(C, \Phi) \mapsto (C', \Phi') = (U(t)C, U(t)\Phi) \]

a flow solution of the “working equation” is changed into the solution of

\[i \frac{d}{dt} c'_\sigma(t) = \langle H \Psi' \mid \Phi'_\sigma \rangle, \quad i \Gamma(t) \frac{\partial}{\partial t} \Phi'(t, x) = (I - P_{\Phi'}) \left[[\nabla'_{\Phi} \Psi']^* H \Psi' \right] \]

\[\Psi' = \pi(C'\Phi') = \phi(C, \Phi) = \Psi \]

whose solution satisfy the variational principle:

\[\left\langle \left[i \frac{\partial}{\partial t} - H \right] \Psi' \mid \delta \Psi' \right\rangle = 0, \quad \text{for all} \quad \delta \Psi' \in T'_\Psi F_{N,K}^{FR}(\Omega). \]
Consequence of the variational principle

- Conservation of energy.
- Sufficient conditions for global invertibility of the matrix $\Gamma(t)$.
- A posteriori error estimates.
Conservation of energy

\[\langle \left[i \frac{\partial}{\partial t} - H \right] \psi | \delta \psi \rangle = 0 \Rightarrow \langle \left[i \frac{\partial}{\partial t} - H \right] \psi | \frac{\partial \psi}{\partial t} \rangle = 0 \]

\[\Rightarrow \Re \langle H \psi, \frac{\partial \psi}{\partial t} \rangle = 0 \Rightarrow \frac{dE(\psi)}{dt} = 0. \]

Therefore for potentials \(V \) with Coulomb like singularities:

\[V(x) = \frac{c \geq 0}{|x|} + V_{\text{reg}}(|x|) \]

local in time solutions (as long as \(\int_0^t (\gamma_1(s))^{-1} ds < \infty \)).
Conservation of full rank

\[\mathcal{E}(K) = \inf_{(C, \Phi) \in \mathcal{F}_{N,K}} \mathcal{E}(\pi(C, \Phi)), \quad K' \geq K \Rightarrow \mathcal{E}(K') \leq \mathcal{E}(K). \]

Theorem A stability condition:

\[
V(x) = \frac{c \geq 0}{|x|} + V_{\text{reg}}(|x|), \quad (C_0, \Phi_0) \in \mathcal{F}_{N,K}^{FR}, \quad \Phi_0 \in H^1(\Omega)^K,
\]

\[\mathcal{E}(\pi(C_0, \Phi_0)) < \mathcal{E}(K - 1) \]

implies global in time existence of a smooth solution.

Proof By contradiction:

\[
\lim_{n \to \infty} \gamma_m(t_n) = 0, \quad 0 < \beta \leq \gamma_i(t_n) \text{ for } i \geq m + 1
\]

\[
w - \lim_{n \to \infty} (C(t_n), \Phi(t_n)) = (C^*, \Phi^*) \in \mathcal{F}_{N,K-1}
\]

\[\mathcal{E}(K - 1) > \mathcal{E}(\pi(C_0, \Phi_0)) = \mathcal{E}(\pi(C_{t_n}, \Phi_{t_n})) \geq \mathcal{E}(\pi(C^*, \Phi^*)) \geq \mathcal{E}(K - 1) \]
Introduce $U = (\mathcal{U}, U)$ with U which diagonalizes Γ then:

$$\psi^n = \sum_{\sigma \cap \{1,2,\ldots,m\} \neq \emptyset} c^m\sigma \Phi^m\sigma + \sum_{\sigma \cap \{1,2,\ldots,m\} = \emptyset} c'_\sigma \Phi^m\sigma.$$

$$C \geq \frac{1}{2} \sum_{1 \leq i \leq K} \gamma_i(t_n) \int_{\Omega} |\nabla \phi_i(t_n)|^2 dx \geq \beta \sum_{m+1 \leq i \leq K} \int_{\Omega} |\nabla \phi_i(t_n)|^2 dx$$

$$\psi^n = \sum_{\sigma \cap \{1,2,\ldots,m\} \neq \emptyset} c^m\sigma \Phi^m\sigma + \sum_{\sigma \cap \{1,2,\ldots,m\} = \emptyset} c'_\sigma \Phi^m\sigma.$$

$$\| \sum_{\sigma \cap \{1,2,\ldots,m\} \neq \emptyset} c^m\sigma \Phi^m\sigma \|_{L^2(\Omega^N)} = \sum_{\sigma \cap \{1,2,\ldots,m\} \neq \emptyset} |c'_\sigma|^2$$

$$\leq \sum_{1 \leq i \leq m} \sum_{i \in \sigma} |c'_\sigma|^2 = \sum_{1 \leq i \leq m} \gamma_i^n \to 0.$$

This implies strong convergence of the $\psi(t_n)$ and weak semi continuity for the energy.
How good is the approximation?

\[
\left[i \frac{\partial}{\partial t} - H \right] \Psi = \mathcal{P}_{T \Psi} \mathcal{F}^{FR}_{N,K} \left(\left[i \frac{\partial}{\partial t} - H \right] \Psi \right) \\
+ (I - \mathcal{P}_{T \Psi} \mathcal{F}^{FR}_{N,K}) \left(\left[i \frac{\partial}{\partial t} - H \right] \Psi \right) \\
= (I - \mathcal{P}_{T \Psi} \mathcal{F}^{FR}_{N,K}) H \Psi.
\]

\[
\| \Psi(t)_{E} - \Psi(t) \|_{L^2(\Omega^N)} \leq \| \Psi^0_{E}(t) - \Psi^0 \|_{L^2(\Omega^N)} + \| \int_{0}^{t} (I - \mathcal{P}_{T \Psi} \mathcal{F}^{FR}_{N,K}) H \Psi(s) ds \|_{L^2(\Omega^N)}.
\]

A posteriori error estimate.
A priori Error estimate?

\[\delta \Psi = \sum_{\sigma} \delta_{\sigma} \Phi_{\sigma} + \sum_{\sigma} c_{\sigma} \sum_{1 \leq i \leq K} \frac{\partial \Phi_{\sigma}}{\partial \phi_i} \delta \phi_i \]

With \(\delta \phi_i = 0 \) and freedom of choice of the \(\phi_i \)

\[\| \int_0^t (I - \mathcal{P}_{T\Psi} \mathcal{F}_{N,K}^{FR}) H \Psi(s) \, ds \|_{L^2(\Omega_N)} \leq \int_0^t \min_{(C', \Phi')} \| (H \Psi)(s) - \pi(C', \Phi') \|_{L^2(\Omega_N)}(s) \, ds \]

Much better than Galerkin!! With standard choice of the \(\phi'_1, \phi'_2 \ldots \phi'_K \) (Fourier, spectral) it is at least like \(K^{-s} \) with \(s \) depending on the regularity of \(\Psi \).
THANKS FOR THE INVITATION

AND FOR YOUR PATIENCE.