Tutorials:
Braid Group Cryptography

Singapore, June 2007

David Garber

Department of Applied Mathematics, School of Sciences
Holon Institute of Technology
Holon, Israel
Contents

• Basic definitions

• Normal forms

• Cryptosystems based on the braid group

• Attacks on the these cryptosystems

• Future directions
Braid Group B_n

Algebraic Definition

Artin generators: $\sigma_1, \ldots, \sigma_{n-1}$

Relations:

\[
\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \\
\sigma_i \sigma_j = \sigma_j \sigma_i \text{ when } |i - j| > 1
\]

$$B_2 \cong \mathbb{Z}$$

B_n is not commutative for $n \geq 3$.

$$Z(B_n) \cong \mathbb{Z}$$
Geometric presentation of the braid group:

The elements of B_n can be interpreted as geometric n strand braids.

A braid can be seen as induced by a three-dimensional figure consisting on n disjoint curves.
Braid relations in the geometric presentation:

\[\sigma_1 \sigma_3 = \sigma_3 \sigma_1 \]

Band generators:

\[\sigma_t = a_{t+1,t} \]
The band generators satisfies the following relations:

- \(a_{ts}a_{rq} = a_{rq}a_{ts} \) if \([s, t] \cap [q, r] = \emptyset\) or \([s, t] \subset [q, r]\) or \([q, r] \subset [s, t]\).

- \(a_{ts}a_{sr} = a_{tr}a_{ts} = a_{sr}a_{tr} \) for \(1 \leq r < s < t \leq n\).
Normal forms of elements in the braid group

Normal form: a unique presentation to each element in the group.

Let ε be the empty word. Having a normal form, solve the word problem:

Word Problem: Given a braid w, does $w \equiv \varepsilon$ hold?

Equivalently:
Problem: Given two braids w, w', does $w \equiv w'$ hold?

Since: $w \equiv w'$ is equivalent to $w^{-1}w' \equiv \varepsilon$.
Garside normal form

Positive braid: can be written as a product of positive powers. B_n^+ is the monoid of positive braids.

Fundamental braid $\Delta_n \in B_n^+$:

$$\Delta_n = (\sigma_1 \cdots \sigma_{n-1})(\sigma_1 \cdots \sigma_{n-2}) \cdots \sigma_1$$

Geometrically, Δ_n is a braid on n strands, where any two strands cross positively exactly once.
Properties:

- For any generator σ_i, we can write $\Delta_n = \sigma_i A = B \sigma_i$ for $A, B \in B_n^+$.

- $\sigma_i \Delta_n = \Delta_n \sigma_{n-i}$.

- Δ_n^2 is the generator of the center of B_n.

Partial order on B_n: for $A, B \in B_n$, $A \preceq B$ where $B = AC$ for some $C \in B_n^+$.

Properties:

- $B \in B_n^+ \iff \varepsilon \preceq B$

- $A \preceq B \iff B^{-1} \preceq A^{-1}$.

P is a permutation braid if

$$\varepsilon \preceq P \preceq \Delta_n$$

Geometrically, a permutation braid is a braid on n strands, where any two strands cross positively at most once.
Given a permutation braid P:

\[S(P) = \{i | P = \sigma_i P' \text{ for some } P' \in B_n^+ \} \]

\[F(P) = \{i | P = P' \sigma_i \text{ for some } P' \in B_n^+ \} \]

Properties:
1. $i \in S(P)$ if and only if strands i and $i + 1$ are exchanged in P.
2. $F(P) = S(\text{rev}(P))$ where $\text{rev}(P)$ reverses the order of letters in P.

Example: $S(\Delta_n) = F(\Delta_n) = \{1, \ldots, n - 1\}$.

Left-weighted decomposition of a positive braid $A \in B_n^+$:

\[A = P_1 P_2 \cdots P_k \text{ where } S(P_{i+1}) \subset F(P_i). \]
Example:

\[
\sigma_1 \sigma_2 \cdot \sigma_2 \sigma_1 \sigma_2 = \sigma_1 \sigma_2 \cdot \sigma_1 \sigma_2 \sigma_1 = \sigma_1 \sigma_2 \sigma_1 \cdot \sigma_2 \sigma_1
\]
Theorem (Garside): For every braid $w \in B_n$, there is a unique presentation (called **Garside normal form**) given by:

$$w = \Delta_n^r P_1 P_2 \cdots P_k$$

where $r \in \mathbb{Z}$ is maximal, P_i are permutation braids, $P_k \neq \varepsilon$ and $P_1 P_2 \cdots P_k$ is a left-weighted decomposition.

Converting a given braid w into its Garside normal form:
1. Replace σ_i^{-1} by $\Delta_n^{-1} B_i$ where B_i is a permutation braid.
2. Move any appearance of Δ_n to the left. So we get: $w = \Delta_n^{r'} A$
 where A is a positive braid.
3. Write A as a left-weighted decomposition of permutation braids, by computing the starting sets and finishing sets.

Complexity: $O(|W|^2 n \log n)$ where $|W|$ is the length of the word in B_n.

Tutorials: Braid Group Cryptography
Example:

\[w = \sigma_1 \sigma_3^{-1} \sigma_2 \in B_4 \]

Since \(\Delta_4 = \sigma_3 \sigma_2 \sigma_1 \sigma_3 \sigma_2 \cdot \sigma_3 \), replace \(\sigma_3^{-1} \) by: \(\Delta_4^{-1} \sigma_3 \sigma_2 \sigma_1 \sigma_3 \sigma_2 \).

So:

\[w = \sigma_1 \cdot \Delta_4^{-1} \sigma_3 \sigma_2 \sigma_1 \sigma_3 \sigma_2 \cdot \sigma_2 \]

\[w = \Delta_4^{-1} \cdot \sigma_3 \sigma_2 \sigma_1 \sigma_3 \sigma_2 \sigma_2 \]

Left-weighted decomposition:

\[w = \Delta^{-1} \cdot \sigma_2 \sigma_1 \sigma_3 \sigma_2 \sigma_1 \cdot \sigma_1 \sigma_2 \]
Infimum and Supremum:

\[\inf(w) = \max\{r : \Delta^r \leq w\} \]
\[\sup(w) = \min\{s : w \preceq \Delta^s\} \]

If

\[w = \Delta^m P_1 P_2 \cdots P_k \]

then:

\[\inf(w) = m, \sup(w) = m + k \]

Canonical length of \(w \) (or Complexity):

\[\text{len}(w) = \sup(w) - \inf(w) = \#\text{permutation braids} \]
Birman-Ko-Lee’s normal form

Fundamental word:

\[\delta_n = a_{n,n-1} a_{n-1,n-2} \cdots a_{2,1} = \sigma_{n-1} \sigma_{n-2} \cdots \sigma_1 \]

Properties: \[\delta_n = a_{sr} A = B a_{sr} \] for \(A, B \) positive;
\[a_{sr} \delta_n = \delta_n a_{s+1,r+1} \]
; \[\Delta_2^n = \delta_n \]
Theorem (Birman-Ko-Lee): $w \in B_n$ has the following unique form:

$$w = \delta_n^j A_1 A_2 \cdots A_k,$$

where $A = A_1 A_2 \cdots A_k$ is positive, j is maximal and k is minimal.

There are $C_n = \frac{(2n)!}{n!(n+1)!}$ (the nth Catalan number) different canonical factors.

Complexity: $O(|W|^{2n})$, where $|W|$ is the length of the word.

More normal forms: Bressaud, Dehornoy, Dynnikov-Wiest.
Public Key Cryptography
(Diffie-Hellman 1976)

Idea: use a one-way function for encryption, which remains one-way only if some information is kept secret.

Purposes for applications of public-key cryptography:

- Confidential message transmission.
- Key exchange.
- Authentication.
- Digital signature.
Diffie-Hellman key-exchange protocol (1976)

Discrete Logarithm Problem: Given α and $\alpha^X \pmod q$, find X.

Protocol:
Public keys: prime q and a primitive element α.
Private keys: Alice: a; Bob: b.

Alice: Sends Bob publicly: $a' = \alpha^a \pmod q$.
Bob: Sends Alice publicly: $b' = \alpha^b \pmod q$

Shared secret key: $K_{ab} = \alpha^{ab} \pmod q$

K_{ab} is shared key: Alice computes $K_{ab} = (b')^a \pmod q$.
Bob computes $K_{ab} = (a')^b \pmod q$.

An additional famous Public-Key Cryptosystem: RSA.
The underlying (apparently hard) problems

The Conjugacy Problem: Given $u, w \in B_n$, determine whether they are conjugate, i.e., there exists $v \in B_n$ such that

$$w = v^{-1}uv$$

Conjugacy Search Problem: Given conjugate elements $u, w \in B_n$, find $v \in B_n$ such that

$$w = v^{-1}uv$$

Decomposition Problem: $u \notin G \leq B_n$. Find $x, y \in G$ such that

$$w = xuy.$$
Key-agreement protocol

\[G = \langle g_1, g_2, \ldots, g_n \rangle \leq B_N \] publicly known.

Secret keys: Alice: \(a \in G \). Bob: \(b \in G \).

Alice’s public key: \(ag_1a^{-1}, ag_2a^{-1}, \ldots, ag_na^{-1} \).
Bob’s public key: \(bg_1b^{-1}, bg_2b^{-1}, \ldots, bg_nb^{-1} \).

Bob knows \(b = g_{k_1}^{i_1}g_{k_2}^{i_2}\cdots g_{k_m}^{i_m} \Rightarrow aba^{-1} \Rightarrow K = (aba^{-1})b^{-1} \).

Similarly, Alice knows \(bab^{-1} \Rightarrow ba^{-1}b^{-1} \Rightarrow K = a(ba^{-1}b^{-1}) \).

Parameters: \(B_{80} \) with \(m = 20 \) and \(g_i \) of length 5 or 10 Artin generators.
Diffie-Hellman-type key-exchange protocol
Ko-Lee-Cheon-Han-Kang-Park (2000)

\[LB_n = \langle \sigma_1, \ldots, \sigma_{m-1} \rangle; \quad UB_n = \langle \sigma_{m+1}, \ldots, \sigma_{n-1} \rangle \] where \(m = \left\lfloor \frac{n}{2} \right\rfloor \)

Protocol:

Public key: one braid \(p \in B_n \).

Private keys: Alice: \(s \in LB_n \); Bob: \(r \in UB_n \).

Alice: Sends Bob publicly: \(p' = sps^{-1} \).

Bob: Sends Alice publicly: \(p'' = rpr^{-1} \).

Shared secret key: \(K = srpr^{-1}s^{-1} \)

K shared: Alice: \(K = sp''s^{-1} = srpr^{-1}s^{-1} \).
Bob: \(K = rp'r^{-1} = rsp^{-1}r^{-1} \).

Parameters: \(B_{80} \), with braids of canonical length 12.
Encryption and decryption
Ko-Lee-Cheon-Han-Kang-Park (2000)

$h : B_n \rightarrow \{0, 1\}^N$ is a collision-free one-way hash function.

K is a shared secret key.

Bob has a message $m_B \in \{0, 1\}^N$:

Bob: sends Alice publicly: $m''_B = m_B \oplus h(K)$.

Alice: computes $m_A = m''_B \oplus h(K)$, and we have $m_A = m_B$, since:

$$m_A = m_B \oplus h(K) \oplus h(K) = m_B.$$