Twisted Reidemeister torsion for twist knots

Jérôme Dubois (CRM Barcelona, Spain)
Vu Huynh (Vietnam National University, Ho Chi Minh City, Vietnam)
Yoshikazu Yamaguchi (University of Tokyo, Japan)

arXiv:0706.2213
Twist knots

J(2, n) and J(−2, n), n > 0.

Example: In D. Rolfsen's table the trefoil knot is 3_1 = J(2, 2), the figure eight knot is 4_1 = J(2, −2), 5_2 = J(2, 4), 6_1 = J(2, −4).
Twist knots

\[J(2, n) \text{ and } J(-2, n), \quad n > 0. \]
Twist knots

\[n\text{-crossings} \]

Figure: Twist knots \(J(2, n) \) and \(J(-2, n), \ n > 0 \).

Example

In D. Rolfsen’s table the trefoil knot is \(3_1 = J(2, 2) \), the figure eight knot is \(4_1 = J(2, -2), \ 5_2 = J(2, 4), \ 6_1 = J(2, -4) \).
Properties of twist knots

are two-bridge knots (i.e. rational knots).

the fundamental group has two generators and one relation.

\[\pi_1(J(2,2m)) = \langle x, y | w^m x = y^m w \rangle \]

where \(w \) is the word \([y, x^{-1}] = yx^{-1}y^{-1}x \).

\[\pi_1(J(2,2m+1)) = \langle x, y | w^m x = y^m w \rangle \]

where \(w \) is the word \([x, y^{-1}] = xy^{-1}x^{-1}y \).

except the trefoil, are hyperbolic.

except the trefoil and the figure-eight, are not fibered, but virtually fibered.

representations of the fundamental group to \(\text{SL}_2(\mathbb{C}) \) are described by Riley's method.
Properties of twist knots

- are two-bridge knots (i.e. rational knots).

\[\pi_1(J(2,2m)) = \langle x, y | w^m x = y w^m \rangle \]

where \(w \) is the word \([y, x^{-1}] = yx^{-1}y^{-1}x \).

\[\pi_1(J(2,2m+1)) = \langle x, y | w^m x = y w^m \rangle \]

where \(w \) is the word \([x, y^{-1}] = xy^{-1}x^{-1}y \).

- except the trefoil, are hyperbolic.
- except the trefoil and the figure-eight, are not fibered, but virtually fibered.
- representations of the fundamental group to \(SL_2(\mathbb{C}) \) are described by Riley's method.
Properties of twist knots

- are two-bridge knots (i.e. rational knots).
- the fundamental group has two generators and one relation.

\[\pi_1(J(2, 2m)) = \langle x, y \mid w^m x = yw^m \rangle \]

where \(w \) is the word \([y, x^{-1}] = yx^{-1} y^{-1} x\).

\[\pi_1(J(2, 2m + 1)) = \langle x, y \mid w^m x = yw^m \rangle \]

where \(w \) is the word \([x, y^{-1}] = xy^{-1} x^{-1} y\).
Properties of twist knots

- are two-bridge knots (i.e. rational knots).
- the fundamental group has two generators and one relation.

\[\pi_1(J(2, 2m)) = \langle x, y \mid w^m x = yw^m \rangle \]

where \(w \) is the word \([y, x^{-1}] = yx^{-1}y^{-1}x\).

\[\pi_1(J(2, 2m+1)) = \langle x, y \mid w^m x = yw^m \rangle \]

where \(w \) is the word \([x, y^{-1}] = xy^{-1}x^{-1}y\).

- except the trefoil, are hyperbolic.

- except the trefoil and the figure-eight, are not fibered, but virtually fibered.

- representations of the fundamental group to \(\text{SL}_2(\mathbb{C}) \) are described by Riley's method.
Properties of twist knots

- are two-bridge knots (i.e. rational knots).
- the fundamental group has two generators and one relation.

\[\pi_1(J(2, 2m)) = \langle x, y \mid w^mx = yw^m \rangle \]

where \(w \) is the word \([y, x^{-1}] = yx^{-1}y^{-1}x\).

\[\pi_1(J(2, 2m + 1)) = \langle x, y \mid w^mx = yw^m \rangle \]

where \(w \) is the word \([x, y^{-1}] = xy^{-1}x^{-1}y\).

- except the trefoil, are hyperbolic.
- except the trefoil and the figure-eight, are not fibered, but virtually fibered.
Properties of twist knots

- are two-bridge knots (i.e. rational knots).
- the fundamental group has two generators and one relation.

\[\pi_1(J(2, 2m)) = \langle x, y | w^m x = yw^m \rangle \]

where \(w \) is the word \([y, x^{-1}] = yx^{-1}y^{-1}x\).

\[\pi_1(J(2, 2m + 1)) = \langle x, y | w^m x = yw^m \rangle \]

where \(w \) is the word \([x, y^{-1}] = xy^{-1}x^{-1}y\).

- except the trefoil, are hyperbolic.
- except the trefoil and the figure-eight, are not fibered, but virtually fibered.
- representations of the fundamental group to \(SL_2(\mathbb{C}) \) are described by Riley’s method.
Reidemeister torsion

Reidemeister torsion is a classical topological invariant, studied since the 1930s.

Twisted Reidemeister torsion associated with a representation of the fundamental group to $GL(n, F)$ has been studied since the early 1990's. Here we are interested in the adjoints of representations to $SL_2(C)$, in connections with hyperbolic structures and the theory of character varieties (as well as Chern-Simons theory).

Twisted Alexander polynomial detects the unknot, decides fibrerness for some classes of knots (2006, 2007).

Sign-refined twisted torsion (in analog to V. Turaev's sign-refined torsion) was proposed by J. Dubois (2005).
Reidemeister torsion

Reidemeister torsion is a classical topological invariant, studied since the 1930s. Twisted Reidemeister torsion associated with a representation of the fundamental group to $\text{GL}(n, F)$ has been studied since the early 1990's. Here we are interested in the adjoints of representations to $\text{SL}_2(C)$, in connections with hyperbolic structures and the theory of character varieties (as well as Chern-Simons theory).

Reidemeister torsion

Reidemeister torsion is a classical topological invariant, studied since 1930s.
Reidemeister torsion

- Reidemeister torsion is a classical topological invariant, studied since 1930s.
- Twisted Reidemeister torsion associated with a representation of the fundamental group to $GL(n, \mathbb{F})$ has been studied since the early 1990’s.

Twisted Alexander polynomial detects the unknot, decides fibriness for some classes of knots (2006, 2007).

Sign-refined twisted torsion (in analog to V. Turaev’s sign-refined torsion) was proposed by J. Dubois (2005).
Reidemeister torsion

- Reidemeister torsion is a classical topological invariant, studied since 1930s.

- Twisted Reidemeister torsion associated with a representation of the fundamental group to $\text{GL}(n, \mathbb{F})$ has been studied since the early 1990’s. Here we are interested in the adjoints of representations to $\text{SL}_2(\mathbb{C})$, in connections with hyperbolic structures and the theory of character varieties (as well as Chern-Simons theory).

Twisted Alexander polynomial detects the unknot, decides fiberness for some classes of knots (2006, 2007).

Sign-refined twisted torsion (in analog to V. Turaev’s sign-refined torsion) was proposed by J. Dubois (2005).
Reidemeister torsion

- Reidemeister torsion is a classical topological invariant, studied since 1930s.
- Twisted Reidemeister torsion associated with a representation of the fundamental group to GL(n, \mathbb{F}) has been studied since the early 1990’s.
 Here we are interested in the adjoints of representations to $\text{SL}_2(\mathbb{C})$, in connections with hyperbolic structures and the theory of character varieties (as well as Chern-Simons theory).
Reidemeister torsion

- Reidemeister torsion is a classical topological invariant, studied since 1930s.
- Twisted Reidemeister torsion associated with a representation of the fundamental group to $GL(n, F)$ has been studied since the early 1990’s. Here we are interested in the adjoints of representations to $SL_2(\mathbb{C})$, in connections with hyperbolic structures and the theory of character varieties (as well as Chern-Simons theory).
Reidemeister torsion

- Reidemeister torsion is a classical topological invariant, studied since 1930s.
- Twisted Reidemeister torsion associated with a representation of the fundamental group to $\text{GL}(n, \mathbb{F})$ has been studied since the early 1990’s. Here we are interested in the adjoints of representations to $\text{SL}_2(\mathbb{C})$, in connections with hyperbolic structures and the theory of character varieties (as well as Chern-Simons theory).
- Sign-refined twisted torsion (in analog to V. Turaev’s sign-refined torsion) was proposed by J. Dubois (2005).
Torsion of a chain complex

Let $C^\bullet = (0 \rightarrow C^m \xrightarrow{d_m} C^{m-1} \xrightarrow{d_{m-1}} \cdots \xrightarrow{d_1} C^0 \rightarrow 0)$ be a chain complex of finite dimensional vector spaces over \mathbb{C}. Choose a basis c_i for C^i, and a basis h_i for $H^i = H^i(C^\bullet)$. Let b_i be a sequence of vectors in C^i such that $d_i(b_i)$ is a basis of $B_{i-1} = \text{im}(d_i)$. Let \tilde{h}_i be a lift of h_i in $Z_i = \ker(d_i)$. The sign-determined Reidemeister torsion of C^\bullet is

$$\text{Tor}(C^\bullet, c^\bullet, h^\bullet) = (-1)^{|C^\bullet|} \cdot n \prod_{i=0} \left[d_i + 1 \right] \left(\frac{b_i}{c_i} \right) (-1)^i \in C^\bullet.$$

where $|C^\bullet| = \sum_{k \geq 0} \alpha_k(C^\bullet) \beta_k(C^\bullet)$, $\alpha_i(C^\bullet) = \sum_{k=0} \dim C_k$, $\beta_i(C^\bullet) = \sum_{k=0} \dim H_k$.
Torsion of a chain complex

Let $C_\ast = (0 \to C_n \xrightarrow{d_n} C_{n-1} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_1} C_0 \to 0)$ be a chain complex of finite dimensional vector spaces over \mathbb{C}.

Choose a basis c_i for C_i, and a basis h_i for $H_i = H_i(C_\ast)$. Let b_i be a sequence of vectors in C_i such that $d_i(b_i)$ is a basis of $B_i = \text{im}(d_i)$. Let \tilde{h}_i be a lift of h_i in $Z_i = \ker(d_i)$. The sign-determined Reidemeister torsion of C_\ast is

$$\text{Tor}(C_\ast, c_\ast, h_\ast) = (-1)^{|C_\ast|} \cdot n \prod_{i=0} \left[d_i + 1 \left(b_i + 1 \frac{\tilde{h}_i}{c_i} \right) \right] (-1)^{i+1} \in C_\ast.$$

where $|C_\ast| = \sum_{k \geq 0} \alpha_k(C_\ast) \beta_k(C_\ast)$, $\alpha_i(C_\ast) = \sum_{i=k} \dim C_k$, $\beta_i(C_\ast) = \sum_{i=k} \dim H_k$.
Torsion of a chain complex

Let \(C_\ast = (0 \to C_n \xrightarrow{d_n} C_{n-1} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_1} C_0 \to 0) \) be a chain complex of finite dimensional vector spaces over \(\mathbb{C} \).

Choose a basis \(c^i \) for \(C_i \), and a basis \(h^i \) for \(H_i = H_i(C_\ast) \).

Let \(b^i \) be a sequence of vectors in \(C_i \) such that \(d_i(b^i) \) is a basis of \(B_{i-1} = \text{im}(d_i) \).

Let \(h^i \) be a lift of \(h^i \) in \(Z_i = \ker(d_i) \).
Torsion of a chain complex

Let $C_* = (0 \to C_n \xrightarrow{d_n} C_{n-1} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_1} C_0 \to 0)$ be a chain complex of finite dimensional vector spaces over \mathbb{C}. Choose a basis c^i for C_i, and a basis h^i for $H_i = H_i(C_*)$.

Let b^i be a sequence of vectors in C_i such that $d_i(b^i)$ is a basis of $B_{i-1} = \text{im}(d_i)$.

Let \tilde{h}^i be a lift of h^i in $Z_i = \ker(d_i)$.

The sign-determined Reidemeister torsion of C_* is

$$\text{Tor}(C_*, c^*, h^*) = (-1)^{|C_*|} \prod_{i=0}^{n} [d_{i+1}(b^{i+1}) \tilde{h}^i b^i / c^i](-1)^{i+1} \in \mathbb{C}^*.$$

where $|C_*| = \sum_{k \geq 0} \alpha_k(C_*) \beta_k(C_*)$, $\alpha_i(C_*) = \sum_{k=0}^{i} \dim C_k$, $\beta_i(C_*) = \sum_{k=0}^{i} \dim H_k$.
Let W be a finite CW-complex and ρ be an $\text{SL}_2(\mathbb{C})$-representation of $\pi_1(W)$. Define

$$C^*(\tilde{W}; \mathbb{Z}) \otimes \mathbb{Z}[\pi_1(W)]_{\text{sl}_2(\mathbb{C})}\rho.$$

Here:

- $C^*(\tilde{W}; \mathbb{Z})$ is the complex of the universal cover with integer coefficients which is a $\mathbb{Z}[\pi_1(W)]$-module,
- $\text{Ad}: \text{SL}_2(\mathbb{C}) \rightarrow \text{Aut}(\text{sl}_2(\mathbb{C}))$, $A \mapsto \text{Ad}A$ is the adjoint representation,
- $\text{sl}_2(\mathbb{C})\rho$ is the $\mathbb{Z}[\pi_1(W)]$-module via the composition $\text{Ad} \circ \rho$.

Let $\tau_0 = \text{sgn}(\text{Tor}(C^*(W; \mathbb{R}), c^* B, h^*)) \in \{\pm 1\}$. Define the twisted Reidemeister torsion of W to be

$$\text{TOR}(W; \text{sl}_2(\mathbb{C})\rho, h^*, o) = \tau_0 \cdot \text{Tor}(C^*(W; \text{sl}_2(\mathbb{C})\rho), c^* B, h^*) \in C^*(B).$$
Torsion of a CW-complex

Let W be a finite CW-complex and ρ be an $\text{SL}_2(\mathbb{C})$-representation of $\pi_1(W)$.

Define $C^\ast(W; \text{sl}_2(\mathbb{C}) \rho) = C^\ast(\tilde{W}; \mathbb{Z}) \otimes \mathbb{Z}[\pi_1(W)] \text{sl}_2(\mathbb{C}) \rho$.

Here: $C^\ast(\tilde{W}; \mathbb{Z})$ is the complex of the universal cover with integer coefficients which is a $\mathbb{Z}[\pi_1(W)]$-module, $\text{Ad} : \text{SL}_2(\mathbb{C}) \to \text{Aut}(\text{sl}_2(\mathbb{C}))$, $A \mapsto \text{Ad}A$ is the adjoint representation, $\text{sl}_2(\mathbb{C}) \rho$ is the $\mathbb{Z}[\pi_1(W)]$-module via the composition $\text{Ad} \circ \rho$.

Let $\tau_0 = \text{sgn}(\text{Tor}(C^\ast(W; \mathbb{R}), c^\ast)) \in \{\pm 1\}$.

Define the twisted Reidemeister torsion of W to be $\text{TOR}(W; \text{sl}_2(\mathbb{C}) \rho, h^\ast, \omega) = \tau_0 \cdot \text{Tor}(C^\ast(W; \text{sl}_2(\mathbb{C}) \rho), c^\ast B, h^\ast) \in C^\ast$.
Torsion of a CW-complex

Let \(W \) be a finite CW-complex and \(\rho \) be an \(SL_2(\mathbb{C}) \)-representation of \(\pi_1(W) \).
Define

\[
C_\ast(W; \mathfrak{sl}_2(\mathbb{C})_\rho) = C_\ast(\tilde{W}; \mathbb{Z}) \otimes_{\mathbb{Z}[\pi_1(W)]} \mathfrak{sl}_2(\mathbb{C})_\rho.
\]
Torsion of a CW-complex

Let W be a finite CW-complex and ρ be an $\text{SL}_2(\mathbb{C})$-representation of $\pi_1(W)$.
Define

$$C_\ast(W; \mathfrak{sl}_2(\mathbb{C})_{\rho}) = C_\ast(\tilde{W}; \mathbb{Z}) \otimes \mathbb{Z}[\pi_1(W)] \mathfrak{sl}_2(\mathbb{C})_{\rho}.$$

Here:
$C_\ast(\tilde{W}; \mathbb{Z})$ is the complex of the universal cover with integer coefficients which is a $\mathbb{Z}[\pi_1(W)]$-module,
$\text{Ad}: \text{SL}_2(\mathbb{C}) \rightarrow \text{Aut}(\mathfrak{sl}_2(\mathbb{C}))$, $A \mapsto \text{Ad}_A$ is the adjoint representation,
$\mathfrak{sl}_2(\mathbb{C})_{\rho}$ is the $\mathbb{Z}[\pi_1(W)]$-module via the composition $\text{Ad} \circ \rho$.
Torsion of a CW-complex

Let W be a finite CW-complex and ρ be an $\text{SL}_2(\mathbb{C})$-representation of $\pi_1(W)$. Define

$$C_*(W; \mathfrak{sl}_2(\mathbb{C})_\rho) = \tilde{C}_*(W; \mathbb{Z}) \otimes_{\mathbb{Z}[\pi_1(W)]} \mathfrak{sl}_2(\mathbb{C})_\rho.$$

Here:

- $\tilde{C}_*(W; \mathbb{Z})$ is the complex of the universal cover with integer coefficients which is a $\mathbb{Z}[\pi_1(W)]$-module,
- $\text{Ad}: \text{SL}_2(\mathbb{C}) \to \text{Aut}(\mathfrak{sl}_2(\mathbb{C}))$, $A \mapsto \text{Ad}_A$ is the adjoint representation,
- $\mathfrak{sl}_2(\mathbb{C})_\rho$ is the $\mathbb{Z}[\pi_1(W)]$-module via the composition $\text{Ad} \circ \rho$.

Let

$$\tau_0 = \text{sgn} \left(\text{Tor}(C_*(W; \mathbb{R}), c^*, h^*) \right) \in \{ \pm 1 \}.$$

Define the twisted Reidemeister torsion of W to be

$$\text{TOR}(W; \mathfrak{sl}_2(\mathbb{C})_\rho, \rho^*, \sigma) = \tau_0 \cdot \text{Tor}(C_*(W; \mathfrak{sl}_2(\mathbb{C})_\rho), c_B^*, h^*) \in \mathbb{C}^*.$$
Regularity for representations

Let E_k be the exterior of the knot K. Roughly, with a notion of regularity there is a canonical way to choose bases for homologies. We say that $\rho \in \mathbb{R}_{irr}(\pi_1(K); SL_2(\mathbb{C}))$ is regular if $\dim H^1(\rho)(E_K) = 1$.

For a regular representation ρ, we have $\dim H^1(\rho)(E_K) = 1$, $\dim H^2(\rho)(E_K) = 1$ and $H^j(\rho)(E_K) = 0$ for all $j \neq 1, 2$.

Let λ be the longitude of K. We say that an irreducible representation $\rho: \pi_1(K) \to SL_2(\mathbb{C})$ is λ-regular, if (J. Porti 1997):

1. the inclusion $\iota: \lambda \to E_K$ induces a surjective map $\iota^*: H^1(\rho)(\lambda) \to H^1(\rho)(E_K)$,
2. if $\text{trace}(\rho(\pi_1(\partial E_K))) \subset \{\pm 2\}$, then $\rho(\lambda) \neq \pm 1$.

Regularity for representations

Let E_k be the exterior of the knot K.
Regularity for representations

Let E_k be the exterior of the knot K. Roughly, with a notion of regularity there is a canonical way to choose bases for homologies.
Regularity for representations

Let E_k be the exterior of the knot K.
Roughly, with a notion of regularity there is a canonical way to choose bases for homologies.
We say that $\rho \in R^{\text{irr}}(\pi_1(K); SL_2(\mathbb{C}))$ is regular if $\dim H^\rho_1(E_K) = 1$.
For a regular representation ρ, we have

$$\dim H^\rho_1(E_K) = 1, \quad \dim H^\rho_2(E_K) = 1 \quad \text{and} \quad H^\rho_j(E_K) = 0 \quad \text{for all} \quad j \neq 1, 2.$$
Regularity for representations

Let E_k be the exterior of the knot K.
Roughly, with a notion of regularity there is a canonical way to choose bases for homologies.
We say that $\rho \in \mathcal{R}_{irr}(\pi_1(K); \text{SL}_2(\mathbb{C}))$ is regular if $\dim H_1^\rho(E_K) = 1$.
For a regular representation ρ, we have

$$\dim H_1^\rho(E_K) = 1, \quad \dim H_2^\rho(E_K) = 1 \quad \text{and} \quad H_j^\rho(E_K) = 0 \quad \text{for all} \ j \neq 1, 2.$$

Let λ be the longitude of K. We say that an irreducible representation $\rho : \pi_1(K) \to \text{SL}_2(\mathbb{C})$ is λ-regular, if (J. Porti 1997):

1. the inclusion $\iota : \lambda \hookrightarrow E_K$ induces a surjective map

$$\iota^* : H_1^\rho(\lambda) \to H_1^\rho(E_K),$$

2. if $\text{trace}(\rho(\pi_1(\partial E_K))) \subset \{\pm 2\}$, then $\rho(\lambda) \neq \pm 1$.
The Reidemeister torsion for knot exteriors

Let $\rho: \pi_1(K) \to \text{SL}_2(\mathbb{C})$ be a λ-regular representation. There is a canonical way to choose a basis o for the homology with real coefficients, and a basis $\{h_\rho^{(1)}(\lambda), h_\rho^{(2)}(\lambda)\}$ for the twisted homology. The Reidemeister torsion $T_K^\lambda(\rho)$ is defined to be $\text{TOR}(E_K; \text{sl}_2(C)\rho, \{h_\rho^{(1)}(\lambda), h_\rho^{(2)}(\lambda)\}, o) \in \mathbb{C}^*$. This torsion (defined by Porti, Dubois) is a numerical invariant, associated with not necessary acyclic (i.e. exact) chain complexes, generally not easy to compute. It has role in the asymptotic expansions of the colored Jones polynomial (Dubois-Kashaev, 2007).
Let $\rho: \pi_1(K) \to \text{SL}_2(\mathbb{C})$ be a λ-regular representation. There is a canonical way to choose a basis σ for the homology with real coefficients, and a basis $\{h_{(1)}^\rho(\lambda), h_{(2)}^\rho\}$ for the twisted homology. The Reidemeister torsion $T_{K,\lambda}^{\rho}$ at ρ is defined to be
\[T_{K,\lambda}^{\rho}(\rho) = \text{TOR}(E_K; \text{sl}_2(\mathbb{C})^\rho, \{h_{(1)}^\rho(\lambda), h_{(2)}^\rho\}, \sigma) \in \mathbb{C}^\ast. \]
This torsion (defined by Porti, Dubois) is a numerical invariant, associated with not necessary acyclic (i.e. exact) chain complexes, generally not easy to compute. It has role in the asymptotic expansions of the colored Jones polynomial (Dubois-Kashaev, 2007).
Let $\rho : \pi_1(K) \to \text{SL}_2(\mathbb{C})$ be a λ-regular representation. There is a canonical way to choose a basis o for the homology with real coefficients, and a basis $\{ h_\rho^0(1)(\lambda), h_\rho^0(2) \}$ for the twisted homology. The *Reidemeister torsion* \mathbb{T}_λ^K at ρ is defined to be

$$\mathbb{T}_\lambda^K(\rho) = \text{TOR} \left(E_K; \mathfrak{sl}_2(\mathbb{C})_\rho, \{ h_\rho^0(1)(\lambda), h_\rho^0(2) \}, o \right) \in \mathbb{C}^*.$$
The Reidemeister torsion for knot exteriors

Let $\rho : \pi_1(K) \to \text{SL}_2(\mathbb{C})$ be a λ-regular representation. There is a canonical way to choose a basis σ for the homology with real coefficients, and a basis $\{h_\rho^{(1)}(\lambda), h_\rho^{(2)}\}$ for the twisted homology. The

Reidemeister torsion \mathbb{T}_λ^K at ρ is defined to be

$$\mathbb{T}_\lambda^K(\rho) = \text{TOR} \left(E_K; \mathfrak{sl}_2(\mathbb{C})_\rho, \{h_\rho^{(1)}(\lambda), h_\rho^{(2)}\}, \sigma \right) \in \mathbb{C}^*.$$

This torsion (defined by Porti, Dubois) is a numerical invariant, associated with not necessary acyclic (i.e. exact) chain complexes, generally not easy to compute. It has role in the asymptotic expansions of the colored Jones polynomial (Dubois-Kashaev, 2007).
Twisted Reidemeister torsion polynomial

We study another torsion which is a function of one variable, associated to acyclic chain complex, which is easier to compute.

Let the CW–complex W be E_K and the homomorphism $\alpha: \pi_1(K) \to \mathbb{Z} = \langle t \rangle$ be the abelianization.

Define the $\tilde{sl}_2(C)$-ρ-twisted chain complex of W to be $C^*(W; \tilde{sl}_2(C) \otimes \text{Ad} \circ \rho \otimes \alpha(\text{sl}_2(C) \otimes C(t)))$.

The sign–defined Reidemeister torsion of W with respect to this $\tilde{sl}_2(C)$-twisted chain complex is defined to be $\text{TOR}(W; \tilde{sl}_2(C) \rho, h^\ast, o) = \tau_0 \cdot \text{Tor}(C^*(W; \tilde{sl}_2(C) \rho, c^\ast B, h^\ast)) \in C(t)^\ast$.

If ρ is λ-regular, then all homology groups $H^\ast(E_K; \tilde{sl}_2(C) \rho)$ vanishes, the chain $C^*(W; \tilde{sl}_2(C) \rho)$ is acyclic (Y. Yamaguchi, 2005), and we define the twisted Reidemeister torsion polynomial at ρ to be $T_K^{\lambda}(\rho) = \text{TOR}(W; \tilde{sl}_2(C) \rho, \emptyset, o) \in C(t)^\ast$.

The torsion is also determined up to a factor t^m where $m \in \mathbb{Z}$.
Twisted Reidemeister torsion polynomial

We study another torsion which is a function of one variable, associated to *acyclic* chain complex, which is easier to compute.
Twisted Reidemeister torsion polynomial

We study another torsion which is a function of one variable, associated to *acyclic* chain complex, which is easier to compute. Let the CW–complex W be E_K and the homomorphism $\alpha : \pi_1(K) \to \mathbb{Z} = \langle t \rangle$ be the abelianization.
Twisted Reidemeister torsion polynomial

We study another torsion which is a function of one variable, associated to *acyclic* chain complex, which is easier to compute. Let the CW–complex W be E_K and the homomorphism $\alpha : \pi_1(K) \to \mathbb{Z} = \langle t \rangle$ be the abelianization.

Define the $\tilde{\mathfrak{sl}}_2(\mathbb{C})$-twisted chain complex of W to be

$$C_*(W; \tilde{\mathfrak{sl}}_2(\mathbb{C}) \mathcal{R}) = C_*(\tilde{W}; \mathbb{Z}) \otimes_{Ad \circ \mathcal{R} \otimes \alpha} (\mathfrak{sl}_2(\mathbb{C}) \otimes \mathbb{C}(t)).$$

The sign–defined Reidemeister torsion of W with respect to this $\tilde{\mathfrak{sl}}_2(\mathbb{C})$-twisted chain complex is defined to be

$$\text{TOR}(W; \tilde{\mathfrak{sl}}_2(\mathbb{C}) \mathcal{R}, h^*, o) = \tau_0 \cdot \text{Tor}(C_*(W; \tilde{\mathfrak{sl}}_2(\mathbb{C}) \mathcal{R}, c_B^*, h^*)) \in \mathbb{C}(t)^*. $$
Twisted Reidemeister torsion polynomial

We study another torsion which is a function of one variable, associated to *acyclic* chain complex, which is easier to compute. Let the CW–complex W be E_K and the homomorphism $\alpha : \pi_1(K) \to \mathbb{Z} = \langle t \rangle$ be the abelianization. Define the $\tilde{\mathfrak{sl}}_2(\mathbb{C})$-twisted chain complex of W to be

$$C_*(W; \tilde{\mathfrak{sl}}_2(\mathbb{C})_\rho) = C_*(\tilde{W}; \mathbb{Z}) \otimes \text{Ad} \circ \rho \otimes \alpha (\mathfrak{sl}_2(\mathbb{C}) \otimes \mathbb{C}(t)).$$

The sign–defined Reidemeister torsion of W with respect to this $\tilde{\mathfrak{sl}}_2(\mathbb{C})$-twisted chain complex is defined to be

$$\text{TOR}(W; \tilde{\mathfrak{sl}}_2(\mathbb{C})_\rho, h^*, \emptyset) = \tau_0 \cdot \text{Tor}(C_*(W; \tilde{\mathfrak{sl}}_2(\mathbb{C})_\rho, c^*_B, h^*)) \in \mathbb{C}(t)^*.$$

If ρ is λ-regular, then all homology groups $H_*(E_K; \tilde{\mathfrak{sl}}_2(\mathbb{C})_\rho)$ vanishes, the chain $C_*(W; \tilde{\mathfrak{sl}}_2(\mathbb{C})_\rho)$ is acyclic (Y. Yamaguchi, 2005), and we define the twisted Reidemeister torsion polynomial at ρ to be

$$T^K_\lambda(\rho) = \text{TOR}(W; \tilde{\mathfrak{sl}}_2(\mathbb{C})_\rho, \emptyset, \emptyset) \in \mathbb{C}(t)^*.$$

The torsion is also determined up to a factor t^m where $m \in \mathbb{Z}$.
Theorem (Yamaguchi (2005))

The derivative with respect to t of $T^K_{\lambda}(\rho)$ at $t = 1$ is equal to $-T^K_{\lambda}(\rho)$.
How to compute $\mathcal{T}_\chi^K(\rho)$ from Fox free differential calculus

Choose and fix a Wirtinger presentation $\pi_1(K) = \langle x_1, \ldots, x_k | r_1, \ldots, r_{k-1} \rangle$.

Let W_K be the 2-dimensional CW–complex constructed from the presentation.

F. Waldhausen proved that the Whitehead group of a knot group is trivial. As a result, W_K has the same simple homotopy type as E_K.

So, the CW–complex W_K can be used to compute the twisted Reidemeister torsion polynomial.
How to compute $\mathcal{T}_\lambda^K(\rho)$ from Fox free differential calculus

Choose and fix a Wirtinger presentation

$$\pi_1(K) = \langle x_1, \ldots, x_k \mid r_1, \ldots, r_{k-1} \rangle$$
Choose and fix a Wirtinger presentation

$$\pi_1(K) = \langle x_1, \ldots, x_k \mid r_1, \ldots, r_{k-1} \rangle$$

Let W_K be the 2-dimensional CW–complex constructed from the presentation.
How to compute $\mathcal{I}_{\lambda}^{K}(\rho)$ from Fox free differential calculus

Choose and fix a Wirtinger presentation

$$\pi_1(K) = \langle x_1, \ldots, x_k \mid r_1, \ldots, r_{k-1} \rangle$$

Let W_K be the 2-dimensional CW–complex constructed from the presentation.
F. Waldhausen proved that the Whitehead group of a knot group is trivial. As a result, W_K has the same simple homotopy type as E_K. So, the CW–complex W_K can be used to compute the twisted Reidemeister torsion polynomial.
The twisted complex $C_\ast(W_K; \tilde{\mathfrak{sl}}_2(C)_\rho)$ becomes:

$$0 \to (\mathfrak{sl}_2(C) \otimes \mathbb{C}(t))^{k-1} \xrightarrow{\partial_2} (\mathfrak{sl}_2(C) \otimes \mathbb{C}(t))^k \xrightarrow{\partial_1} \mathfrak{sl}_2(C) \otimes \mathbb{C}(t) \to 0.$$
The twisted complex $C_\ast(W_K; \tilde{sl}_2(\mathbb{C})_\rho)$ becomes:

$$0 \rightarrow (\mathfrak{sl}_2(\mathbb{C}) \otimes \mathbb{C}(t))^{k-1} \xrightarrow{\partial_2} (\mathfrak{sl}_2(\mathbb{C}) \otimes \mathbb{C}(t))^k \xrightarrow{\partial_1} \mathfrak{sl}_2(\mathbb{C}) \otimes \mathbb{C}(t) \rightarrow 0.$$

Where, writing Φ for $(\text{Ad} \circ \rho) \otimes \alpha$:

$$\partial_1 = (\Phi(x_1 - 1), \Phi(x_2 - 1), \ldots, \Phi(x_k - 1)).$$

and ∂_2 is expressed using the Fox’s free differential calculus

$$\partial_2 = \begin{pmatrix}
\Phi\left(\frac{\partial r_1}{\partial x_1}\right) & \ldots & \Phi\left(\frac{\partial r_{k-1}}{\partial x_1}\right) \\
\vdots & \ddots & \vdots \\
\Phi\left(\frac{\partial r_1}{\partial x_k}\right) & \ldots & \Phi\left(\frac{\partial r_{k-1}}{\partial x_k}\right)
\end{pmatrix}$$
The twisted complex $C_*(W_K; \tilde{sl}_2(\mathbb{C})_{\rho})$ becomes:

$$0 \to (\mathfrak{sl}_2(\mathbb{C}) \otimes \mathbb{C}(t))^{k-1} \xrightarrow{\partial_2} (\mathfrak{sl}_2(\mathbb{C}) \otimes \mathbb{C}(t))^k \xrightarrow{\partial_1} \mathfrak{sl}_2(\mathbb{C}) \otimes \mathbb{C}(t) \to 0.$$

Where, writing Φ for $(Ad \circ \rho) \otimes \alpha$:

$$\partial_1 = (\Phi(x_1 - 1), \Phi(x_2 - 1), \ldots, \Phi(x_k - 1)).$$

and ∂_2 is expressed using the Fox's free differential calculus

$$\partial_2 = \begin{pmatrix}
\Phi\left(\frac{\partial r_1}{\partial x_1}\right) & \ldots & \Phi\left(\frac{\partial r_{k-1}}{\partial x_1}\right) \\
\vdots & \ddots & \vdots \\
\Phi\left(\frac{\partial r_1}{\partial x_k}\right) & \ldots & \Phi\left(\frac{\partial r_{k-1}}{\partial x_k}\right)
\end{pmatrix}$$

Let $A^1_{K, Ad \circ \rho}$ denote the $3(k-1) \times 3(k-1)$–matrix obtained from the matrix of ∂_2 by deleting its first row.
The torsion polynomial $T_{K^\lambda}(\rho)$ can be described, up to a factor t^m ($m \in \mathbb{Z}$), as:

$$T_{K^\lambda}(\rho) = \tau_0 \cdot \det A_{1K}, \text{Ad}_\circ \rho \cdot \det(\Phi(x_1 - 1)).$$

This rational function has the first order zero at $t = 1$. The twisted Reidemeister torsion $T_{K^\lambda}(\rho)$ is expressed as

$$T_{K^\lambda}(\rho) = -\lim_{t \to 1} T_{K^\lambda}(\rho)(t - 1) = -\lim_{t \to 1} (\tau_0 \cdot \det A_{1K}, \text{Ad}_\circ \rho)(t - 1) \det(\Phi(x_1 - 1)).$$
The torsion polynomial $\mathcal{T}_\lambda^K(\rho)$ can be described, up to a factor t^m ($m \in \mathbb{Z}$) as:

$$\mathcal{T}_\lambda^K(\rho) = \tau_0 \cdot \frac{\det A_{K, Ad \circ \rho}}{\det(\Phi(x_1 - 1))}.$$
The torsion polynomial $\mathcal{T}^K_\lambda(\rho)$ can be described, up to a factor t^m ($m \in \mathbb{Z}$) as:

$$\mathcal{T}^K_\lambda(\rho) = \tau_0 \cdot \frac{\det A^1_{K, Ad^\circ \rho}}{\det(\Phi(x_1 - 1))}.$$

This rational function has the first order zero at $t = 1$. The twisted Reidemeister torsion $\mathbb{T}^K_\lambda(\rho)$ is expressed as

$$\mathbb{T}^K_\lambda(\rho) = - \lim_{t \to 1} \frac{\mathcal{T}^K_\lambda(\rho)}{(t - 1)} = - \lim_{t \to 1} \left(\tau_0 \cdot \frac{\det A^1_{K, Ad^\circ \rho}}{(t - 1) \det(\Phi(x_1 - 1))} \right).$$
Using Riley's method we can parametrize a non–abelian SL$_2(\mathbb{C})$-representation ρ by two parameters u and s as follows:

\[
\rho(x) = \left(\frac{\sqrt{s} \bar{1}}{\sqrt{s} \bar{0}} \right), \quad \rho(y) = \left(\frac{\sqrt{s} \bar{-1}}{\sqrt{s} \bar{-0}} \right).
\]

Let $W = \rho(w)$. Then s and u satisfy Riley's equation

\[
\phi J(2, 2^m)(s, u) = W_{1, 1} + (1 - s) W_{1, 2} = 0.
\]

Let $\xi \pm$ are the eigenvalues of W, given by explicit expressions in terms of s and u.

Formulas for the torsion of twist knots
Using Riley’s method we can parametrize a non–abelian \(SL_2(\mathbb{C}) \)-representation \(\rho \) by two parameters \(u \) and \(s \) as follows:

\[
\rho(x) = \begin{pmatrix} \sqrt{s} & 1/\sqrt{s} \\ 0 & 1/\sqrt{s} \end{pmatrix}, \quad \rho(y) = \begin{pmatrix} \sqrt{s} & 0 \\ -\sqrt{su} & 1/\sqrt{s} \end{pmatrix}.
\]

Let \(W = \rho(w) \). Then \(s \) and \(u \) satisfy Riley’s equation

\[
\phi_{J(2,2m)}(s, u) = W_{1,1} + (1 - s)W_{1,2} = 0.
\]
Using Riley’s method we can parametrize a non–abelian $\text{SL}_2(\mathbb{C})$-representation ρ by two parameters u and s as follows:

\[
\rho(x) = \begin{pmatrix} \sqrt{s} & 1/\sqrt{s} \\ 0 & 1/\sqrt{s} \end{pmatrix}, \quad \rho(y) = \begin{pmatrix} \sqrt{s} & 0 \\ -\sqrt{su} & 1/\sqrt{s} \end{pmatrix}.
\]

Let $W = \rho(w)$. Then s and u satisfy Riley’s equation

\[
\phi_{J(2,2m)}(s, u) = W_{1,1} + (1 - s)W_{1,2} = 0.
\]

Let ξ_{\pm} are the eigenvalues of W, given by explicit expressions in terms of s and u.

Theorem
Let m be a positive integer.

1. The Reidemeister torsion $T_J^{(2,2m)}(\rho)$ is:

\[
\frac{\tau_0}{s + s^{-1} - 2} \left[C_1(m)s^{m-1}t_m + C_2(m)s^{m-1}t_m + C_3(m) \right].
\]

2. Similarly, $T_J^{(2,-2m)}(\rho)$ is

\[
\frac{\tau_0}{s + s^{-1} - 2} \left[-C_1(-m)s^{-m-1}t_m - C_2(-m)s^{-m-1}t_m + C_3(-m) \right].
\]

Where $C_1(m), C_2(m), C_3(m), t_m, \xi_+, \xi_-$ are explicit expressions in terms of s, u, m (the formulas are available in our paper).
Torsion at the holonomy representation

Formulas of the twisted Reidemeister torsion associated to twist knots are complicated. But formulas for the twisted Reidemeister torsion at holonomy representations are simpler (could be efficiently computed using computer).

Every twist knots except the trefoil knot are hyperbolic. The exterior of a hyperbolic knot admits a hyperbolic structure which determines a unique discrete faithful representation of the knot group in $\text{PSL}_2(\mathbb{C})$, called the holonomy representation. Such a representation lifts to $\text{SL}_2(\mathbb{C})$ and determines two representations in $\text{SL}_2(\mathbb{C})$. Such lifts are λ-regular representations.
Torsion at the holonomy representation

Formulas of the twisted Reidemeister torsion associated to twist knots are complicated. But formulas for the twisted Reidemeister torsion at holonomy representations are simpler (could be efficiently computed using computer).
Torsion at the holonomy representation

Formulas of the twisted Reidemeister torsion associated to twist knots are complicated. But formulas for the twisted Reidemeister torsion at holonomy representations are simpler (could be efficiently computed using computer). Every twist knots except the trefoil knot are hyperbolic. The exterior of a hyperbolic knot admits a hyperbolic structure which determines a unique discrete faithful representation of the knot group in $\text{PSL}_2(\mathbb{C})$, called the holonomy representation. Such a representation lifts to $\text{SL}_2(\mathbb{C})$ and determines two representations in $\text{SL}_2(\mathbb{C})$. Such lifts are λ-regular representations.
Lemma

Let K be a hyperbolic two–bridge knot and suppose that its knot group admits a presentation $\pi_1(K) = \langle x, y \mid wx = yw \rangle$.

If ρ_0 denotes a lift in $\text{SL}_2(\mathbb{C})$ of the holonomy representation, then ρ_0 is given by, up to conjugation,

\[x \mapsto \pm \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad y \mapsto \pm \begin{pmatrix} 1 & 0 \\ -u & 1 \end{pmatrix}, \]

where u is a root of Riley’s equation $\phi_K(1, u) = 0$ of K.

Theorem

Let $m > 0$, then

1. \(\mathbb{T}_{\lambda}^{J(2,2m)}(\rho_u) = \frac{-\tau_0}{u^2 + 4} \left[(4 + m(u^2 - 4u + 8)) \, t_m(\xi^m_+ + \xi^m_-)
+ (t_m(\xi^{m-1}_+ + \xi^{m-1}_-) - 1) \, (u^2 - 4)m
+ (-5u^2 - 8u + 4)t^2_m \right] , \)

2. \(\mathbb{T}_{\lambda}^{J(2,-2m)}(\rho_u) = \frac{-\tau_0}{u^2 + 4} \left[(-4 + m(u^2 - 4u + 8)) \, t_m(\xi^m_+ + \xi^m_-)
+ (t_m(\xi^{m+1}_+ + \xi^{m+1}_-) + 1) \, (u^2 - 4)m
+ (-5u^2 - 8u + 4)t^2_m \right] . \)
Asymptotic behavior of torsion at the holonomy
Asymptotic behavior of torsion at the holonomy

Figure: Graph of $|\mathbb{T}_\lambda^{J(2,-2m)}(\rho_0)|$ and $f(m) = C(\# J(2,-2m))^3$, where $\#K$ is the number of crossings of K.
Observation
The sequence \(\left(|\mathbb{T}^{J(2, -2m)}(\rho_0)| \right)_{m \geq 1} \) has the same behavior as the sequence \(\left(C(\#J(2, -2m))^3 \right)_{m \geq 1} \), for some constant \(C \).
Observation
The sequence \(\left(|\mathbb{T}_\lambda^{J(2,-2m)}(\rho_0)| \right)_{m \geq 1} \) has the same behavior as the sequence \((C(\#J(2,-2m))^3)_{m \geq 1} \), for some constant \(C \).

Twist knots can be obtained by surgery on the Whitehead link. The above observation can be justified by using the Product Formula for Reidemeister torsion.

We do not know yet the precise value of the constant \(C \).
Observation
The sequence \(\left(|T_{\lambda}^{J(2, -2m)}(\rho_0)| \right)_{m \geq 1} \) has the same behavior as the sequence \(\left(C(\#J(2, -2m))^3 \right)_{m \geq 1} \), for some constant \(C \).

Twist knots can be obtained by surgery on the Whitehead link. The above observation can be justified by using the Product Formula for Reidemeister torsion.

We do not know yet the precise value of the constant \(C \).

Thank you!