Pseudo-Chaotic Orbits of Kicked Oscillators

J. H. Lowenstein, New York University

Outline

1. One-dimensional oscillators driven by impulsive kicks, periodic in x and t
 - Resonant $\sin(x)$ kick amplitude; chaos and pseudochaos in stochastic webs
2. Resonant sawtooth oscillator with quadratic irrational parameter
 - Hamiltonian and equations of motion
 - Poincaré section
 - Local and global (piecewise) rotations
 - Dynamical self-similarity: return-map scaling, recursive tiling
 - Scale factors, exponents, fractal dimensions
 - Symbolic representation and dynamics
 - Lifting to the plane: appearance of a new scale factor
 - Long-t behavior of aperiodic orbits: diffusive, super-diffusive, sub-diffusive, ballistic
3. Resonant sawtooth oscillator with cubic irrational parameter
 - Infinitely many invariant components; multi-fractal structure; long-t behavior
4. Nonresonant sawtooth oscillator
 - Invariant measure of aperiodic orbits; numerical explorations
Hamiltonian and Equations of Motion

\[H(x,p) = \frac{1}{2}(p^2 + x^2) + F(x) \sum_{n} (t - 2\pi n) \]

\[\bar{r} = \text{rotation number} = \# \text{kicks per natural period} \quad \bar{r} = 2\pi \]

(Resonant case: rational rotation number)

\[F(x) = F(x + 2\pi) \]

\[\dot{x} = \frac{\partial H}{\partial p} = p \]

\[\dot{p} = -\frac{\partial H}{\partial x} = -x - F'(x) \sum_{n} (t - 2\pi n) \]

Free oscillation for fraction \(\bar{r} \) of a natural period, followed by momentum shift \(p \rightarrow p + \Delta p \), \(\Delta p = -F'(x) \) = "kick amplitude"

Sawtooth kick amplitude: piecewise linear function of \(x \)
Sawtooth Kick Function ($\bar{a} = \sqrt[3]{2}$)

$$f(y) = \bar{a} (y \mod \bar{a})$$

$$y \mod \bar{a} \begin{cases} [0, \bar{a}) & \bar{a} > 0 \\ (\bar{a}0] & \bar{a} < 0 \end{cases}$$

Kicked oscillator map on the plane:

$$W \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \bar{a} x \\ \bar{a} (y \mod \bar{a}) \end{pmatrix}, \quad \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$$

Kicked oscillator map folded onto the fundamental cell:

$$K \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \bar{a} x \\ \bar{a} (y \mod \bar{a}) \end{pmatrix}, \quad \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}$$
Map K in the Dynamical Systems Literature

2. Sawtooth standard map (Ashwin, Dana)

3. Rounded-off oscillator (JHL, Vivaldi, et al)

4. Pseudochaos (Zaslavsky et al)

5. Piecewise isometry (Adler, Kitchens, Tresser (AKT), Goetz, Kahng, Poggiaspalla, et al)

Direct antecedents of this work:

G. Poggiaspalla, J.H.L. unpublished

Scaling and recursive tiling for quadratic irrational parameter.
Symbolic dynamics

Lifting K to obtain W. Some questions:

Do periodic orbits get promoted to accelerator modes?
Can aperiodic orbits escape to infinity? If so, is there an asymptotic power law? (sub-diffusive? diffusive? super-diffusive?) Do orbits on the discontinuity set play a special role?
Scaling Domain \((\frac{a}{b} = -\sqrt{2})\)

Limit point of scaling sequence

Diagram:
- **Scaling Domain:** A square is shown with the scaling domain marked. The domain is labeled as \(D(0)\) and \(D(1)\).
- **Return Map:** An arrow points from \(D(0)\) to \(D(1)\) indicating a return map action.
- **Limit Point:** A point labeled as the limit point of the scaling sequence is indicated.

Mathematical Notation:
- \(W_D(0)\)
- \(0, 1, 2, 0\)
- \(D(0), D(1)\)
- \(D_0(0), D_1(0)\)
Recursive Tiling

Tiling of $\tilde{\omega}$ by sub-domains of $D(0)$

Tiling of $D(0)$ by sub-domains of $D(1)$

Tiling of $\tilde{\omega}$ by sub-domains of $D(1)$
Action of K on \square

$$K u = C u - d(u)\square$$

$$C = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$d(u) = \begin{cases} 1 & u \square 0 \\ 0 & u \square 1 \\ -1 & u \square 2 \end{cases}$$
Action of map W

Compare action of K:

\[K u = C u - d(u) \]

\[W [u, z] = [K u, F z + d(u)] \]

\[F = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]

\[d(u) = d_j , \quad u \in \mathbb{Z}_2^j , \quad z \in \mathbb{Z}^2 \]
Tiles

$D_0(0) = D_0^0(0), D_0^1(0), \ldots, D_0^{18}(0)$

K - orbit of $D_0(0)$ in \mathbb{R}^2 = $\mathbb{R} \times \mathbb{Z}^2$

W - orbit of $D_0(0)$ in $\mathbb{R}^2 = \mathbb{R} \times \mathbb{Z}^2$

Tiles $[D_0^0(0), (0,0)], [D_0^1(0), (0,1)], [D_0^2(0), (1,-1)], \ldots, [D_0^{18}(0), (0,0)]$
Combining orbits initiated in cells \([D(0), (0,0)]\), \([D(0), (0,1)]\), \([D(0), (1,1)]\), and \([D(0), (1,0)]\) with the lowest-level periodic orbits (yellow octagons) produces a **supertile**. These invariant non-convex polygonal regions tile the plane with periodicity \(2t\) in both \(x\) and \(y\) directions. Here \(t = -\sqrt{2}/2\).
Local Scaling

Level \(L = 0, 1, 2, \ldots \)

\[
D_0(L+1) = K D_0(L)
\]

\[
\square(L+1) = K \circ \square(L+1) \circ K^{-1}
\]

\(K \) = local geometric scale factor

If \(\square_j(L) \) is the restriction of \(\square(L) \) to sub-domain \(D_j(L) \),

\[
\square_j(L+1) = \square_{p(j, j^{-1})}(L) \circ \ldots \circ \square_{p(j, 1)}(L) \circ \square_{p(j, 0)}(L)
\]

\(p(j, t) = \) path function \((j=0, \ldots, J-1, \ t=0, 1, \ldots, j^{-1}) \)
Let $T_j(L)$ be the **first-return time** (number of K iterations) for the orbit of $D_j(L)$.

Let A be the **incidence matrix** defined by

$$A_{ij} = \# \{ t : p(j,t) = i \} , \ i,j = 0, \ldots, J-1$$

where $p(j,t)$ is the path function. Thus

A_{ij} is the number of times the first-return orbit of $D_j(L+1)$ visits $D_i(L)$.

Recursion relation for return times:

$$T_j(L+1) = \sum_{k=0}^{J-1} T_{p(j,k)}(L+1) = \sum_{i=0}^{J-1} T_i(L) A_{ij}$$

$\Box_T = \text{largest eigenvalue of transpose of } A$

$\Box_T = \text{temporal scale factor}$

Fractal dimension (Hausdorff or box-counting) for aperiodic orbits of K:

$$\frac{\log \Box_T}{\log \Box_K}$$
Symbolic Representation and Dynamics

For aperiodic \(Z \),

\[
j_0 \searrow D^{t_1}_{j_1}(1) \searrow D^{t_1t_2}_{j_2}(2) \searrow D^{t_1t_2t_3}_{j_3}(3) \searrow \cdots \searrow \{ Z \}
\]

we write

\[
z \iff (j_1, j_2, j_3, \ldots)
\]

\[
j_k = (j_k, t_k)
\]

Path constraint: \(j_k = p(j_{k+1}, t_{k+1}) \)

Action of local map or global map:

\[
Kz \iff (\bar{j}_1', j_2, j_3, \ldots) \iff Wz
\]

where

if \(t_1 < j_1 = 1 \), \(j_1' = (j_1, t_1+1) \), \(j_2' = j_2 \), \(j_3' = j_3 \), ...

if \(t_1 = j_1 = 1 \), \(j_1' = (p(j_2, t_2+1), 0) \),
\(t_2 < j_2 = 1 \), \(j_2' = (j_2, t_2+1) \), \(j_3' = j_3 \), \(j_4' = j_4 \), ...

etc.

Vershik map (example: Gregorian calendar)
Scaling for the lifted map: a third scale factor

Represent \mathbb{R}^2 as

$$\mathbb{R}^2 \times \mathbb{Z}^2 = \{ [(x,y),(m,n)] : (x,y) \in \mathbb{R}^2, (m,n) \in \mathbb{Z}^2 \}$$

Then, for $u \in \mathbb{R}^j$, $z \in \mathbb{Z}^2$,

$$W[u,z] = [Ku, Fz + dj] = [Cu - \square dj, Fz + dj]$$

$$F = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

For the return maps, $u \in \mathbb{R}D_j(L+1)$, $z \in \mathbb{Z}^2$,

$$W^{(L+1)}[u,z] = [\square_{K(L+1)}u, F^{(L+1)}z + d_j(L+1)]$$

where

$$d_j(L+1) = F^{(j,0)}d_{p(j,0)}(L) + F^{(j,1)}d_{p(j,1)}(L) + \cdots + d_{p(j,J-1)}(L)$$

$$\square(j,t) = \begin{pmatrix} T_{p(j,k)} \\ k = t+1 \end{pmatrix}$$

$$d_j(L+1) = \begin{pmatrix} M_{j} \end{pmatrix} d_k(L)$$

$M_{jk} = 2 \times 2$ matrix of integers
In place of \(\mathbb{R} \times \mathbb{Z}^2 \), we may represent \(\mathbb{R}^2 \) as \(\mathbb{R} \times \mathbb{C} \), \(\mathbb{C} = \) complex plane. The formulas of the previous slide remain valid with the replacements

\[
d_j(L) = (m,n) \mathbb{Z}^2 \xrightarrow{\longrightarrow} n + i m \quad (i = \sqrt{-1})
\]

\[
F^p (m,n) \xrightarrow{\longrightarrow} i^p (n + i m)
\]

Now the recursion matrix \(\mathbf{M} \) has entries which are Gaussian integers (Re and Im parts are integers). The asymptotic scaling properties, for \(L \xrightarrow{\longrightarrow} \infty \), of the translation vectors \(d_j(L) \) are revealed by examining the Jordan canonical form \(\mathcal{J}(\mathbf{M}) \) of \(\mathbf{M} \). The **global geometric scale factor** \(\mathbb{W}_W \) is defined as the absolute value of the largest-magnitude diagonal element of \(\mathcal{J}(\mathbf{M}) \).

Fractal dimension associated with aperiodic orbits (or asymptotically long periodic orbits)

\[
D_W = \frac{\log \mathbb{W}_T}{\log \mathbb{W}_W}
\]

Asymptotic distance from initial point \(\sim t \mathbb{W}^{-1} \)

\[
\mathbb{W} = D_W^{-1}
\]
Classification of Quadratic-Kicked Oscillator Models

<table>
<thead>
<tr>
<th>α</th>
<th>K_α</th>
<th>T</th>
<th>W</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1 + \sqrt{5})/2$</td>
<td>$(3 \sqrt{5})/2$</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$(1 - \sqrt{5})/2$</td>
<td>$(3 - \sqrt{5})/2$</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\sqrt{2}$</td>
<td>$3 - 2\sqrt{2}$</td>
<td>9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\sqrt{2}$</td>
<td>$3 - 2\sqrt{2}$</td>
<td>9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\sqrt{2}$ (AKT-R)</td>
<td>$3 - 2\sqrt{2}$</td>
<td>9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\sqrt{3}$</td>
<td>$7 - 4\sqrt{3}$</td>
<td>25</td>
<td>4</td>
<td>.43067... sub-diffusive</td>
</tr>
<tr>
<td>$\sqrt{3}$ (A)</td>
<td>$2 - \sqrt{3}$</td>
<td>4</td>
<td>2</td>
<td>.5 diffusive</td>
</tr>
<tr>
<td>$\sqrt{3}$ (B)</td>
<td>$2 - \sqrt{3}$</td>
<td>5</td>
<td>2</td>
<td>.43067... sub-diffusive</td>
</tr>
<tr>
<td>$\sqrt{2}$ (AKT-D)</td>
<td>$3 - 2\sqrt{2}$</td>
<td>9</td>
<td>5</td>
<td>.732487... super-diffusive</td>
</tr>
<tr>
<td>$(1 + \sqrt{5})/2$</td>
<td>$(3 \sqrt{5})/2$</td>
<td>4</td>
<td>4</td>
<td>1 ballistic</td>
</tr>
<tr>
<td>$(1 - \sqrt{5})/2$</td>
<td>$(3 - \sqrt{5})/2$</td>
<td>4</td>
<td>4</td>
<td>1 ballistic</td>
</tr>
</tbody>
</table>
\[\Box = 3 \quad \Box = \sqrt{3} \]

Generating domain \[\Box \]

Scaling domains

A: limit point (0,0)

B: limit point \((41+72\Box, 41+72\Box)\)
\[\frac{p}{q} = \frac{5}{12} \]
p/q=5/12

Tiling of the Fundamental Domain near the Limit Points at $(\frac{41}{1}, \frac{72}{1})$ and $(41+72, 41+72)$
Accelerator Mode ($\square = -\sqrt{3}$, sequence B)

Level 2, 1000 periods, 5,707,236,000 itns. of W
Accelerator Mode \(\sqrt{3} \)

Level=6, 9 local periods, 10,643,503,428 itns. of \(W \)
Aperiodic Orbit ((3,2),(3,1),(3,1),(3,1),...)
1438699 iterations of $r(0)$
$\ln (m^2 + n^2), (m,n) \in \mathbb{Z}^2$

slope = $\frac{\ln 4}{\ln 5}$

Total iterations: 1,438,699
Histogram of Recurrences ($\nabla = -\sqrt{3}$, B)

bin size = 0.1

$N(t)$

$\ln N(t)$

$\ln t$

$\ln t$

slope $\sim \sqrt{34}$
Aperiodic Orbit(A) : \(((3,4),(7,1),(7,1),(7,1),\ldots)\)

55344 iterations of $r(0)$
\(\ln(m^2+n^2) \)

\[\text{slope} = 1 \]
\(\Box = \Box \sqrt{2} \)
Origin at Center of the Square

(Adler, Kitchens & Tresser, Kouptsov, JHL & Vivaldi)
Level 8 Periodic Orbit, First 10000 Iterations

K period: 129,140,163
W period: 516,560,652

Max. excursion from (0,0) approx. = 35
Aperiodic Orbit Starting at $\frac{1}{17} (19 + 29 \cdot 4 + 7)$

30,000 iterations
Same aperiodic orbit uniformly sampled on a logarithmic time scale. Total time interval:

2778986358613839774206999581799344345700854998386139914133990537
1952551860548740895787499137478593

Lattice coordinates
Aperiodic orbit beginning at corner point \((-t, -t)\)
(8000 iterations of \(W\))
Orbit of \((0, \square)\) on the discontinuity set.

8000 iterations of \(W\).
Orbit of W^4, starting at $(0,\frac{\pi}{2})$ on the discontinuity set.

Log(x) versus Log(t) (10^8 iterations)
Pseudo-Chaotic Orbits of Kicked Oscillators

J. H. Lowenstein, New York University

Outline

1. One-dimensional oscillators driven by impulsive kicks, periodic in \(x \) and \(t \)
 Resonant \(\sin(x) \) kick amplitude; chaos and pseudochaos in stochastic webs

2. Resonant sawtooth oscillator with quadratic irrational parameter
 Hamiltonian and equations of motion
 Poincaré section
 Local and global (piecewise) rotations
 Dynamical self-similarity: return-map scaling, recursive tiling
 Scale factors, exponents, fractal dimensions
 Symbolic representation and dynamics
 Lifting to the plane: appearance of a new scale factor
 Long-\(t \) behavior of aperiodic orbits: diffusive, super-diffusive, sub-diffusive, ballistic

3. Resonant sawtooth oscillator with cubic irrational parameter
 Infinitely many invariant components; multi-fractal structure; long-\(t \) behavior

4. Nonresonant sawtooth oscillator
 Invariant measure of aperiodic orbits; numerical explorations