Semiparametric analysis in multivariate mixture models: A biased sampling approach

Denis Leung
School of Economics and Social Sciences,
Singapore Management University
e-mail: denisleung@smu.edu.sg

Jing Qin
Biostatistics Research Branch,
National Institute of Allergy and Infectious Diseases, USA
e-mail: jingqin@niaid.nih.gov
Biased sampling

1. Convenient and economic sampling of data (James J. Heckman, 2000 Nobel Prize in Economics)

2. Cancer screening studies - patients who turn up for screening are different from those who don’t - Response biased sampling.

3. Comparison of diagnostic tools - an effective tool will pick up “cases” sooner and at an earlier stage - proportion of cases proportional to time since detection - Length-biased

4. Prevalent sampling in which subject who has reached a particular disease stage are followed - Truncation sampling (Case-Control study)

5. General missing data problems
Length biased sampling
(Cox 1966, Vardi 1982, 1985)

\[X \sim dF(X), \quad \text{but } x_1, \ldots x_n \sim \text{iid } G(x) = x \frac{dF(x)}{\int x dF(x)} \Rightarrow g(x) = w(x)f(x) \]

\(F \) can be estimated by
\[
\hat{F}(x) = \frac{A(x)}{A(\infty)}, \quad A(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_i} I(x_i \leq x)
\]

Applications:
1. Cancer screening
2. Wild animal study

What happens if an additional (training) sample from \(F \) is available

\[y_1, \ldots y_m \sim \text{iid } F(y) \]

How can we estimate \(F \) by combining data from \(X \) and \(Y \)? Vardi (1982)
Case-control study

\[
P(D = 1|x) = \frac{\exp(\alpha + \beta x)}{1 + \exp(\alpha + \beta x)}
\]

\[x_1, ..., x_{n_0} \sim \text{iid } f(x|D = 0)\]

\[x'_1, ..., x'_{n_1} \sim \text{iid } f(x|D = 1)\]

1. \(n_0\) and \(n_1\) are fixed

2. \(\beta\) is the “odds-ratio”. Anderson (1972) and Prentice and Pyke (1979) found that the prospective likelihood is valid even for the retrospective sampling problem for \(\beta\).

3. Bayes Theorem gives

\[
\frac{f(x|D = 1)}{f(x|D = 0)} = \exp(\alpha^* + \beta x) \quad \rightarrow \quad f(x|D = 1) = \frac{w(x)}{f(x|D = 0)} \exp(\alpha^* + \beta x) f(x|D = 0)
\]

\[
\alpha^* = \alpha + \log\{P(D = 0)/P(D = 1)\}
\]

4. Biased sampling problem with weight function \(w(x) = \exp(\alpha^* + x\beta)\) (Vardi, 1982, 1985; Gill, Vardi and Wellner, 1988; Gilbert, Lele and Vardi, 1999)
Missing data problems

1. Assume a regression model

\[f(y|x) = f(y|x, \beta) \]

2. Observed data: \(\{(\delta = 1, y_i, x_i)\}_{i=1}^{n_1} \) and \(\{(\delta = 0, ?, x_i)\}_{i=n_1}^{n} \) where \(\delta = 1 \) if \(Y \) is observed and 0 otherwise

3. Non-ignorable missing: Missing probability

\[P(\delta = 1|y, x) = P(\delta = 1|y) = \frac{\exp(\alpha_0 + \alpha_1 y)}{1 + \exp(\alpha_0 + \alpha_1 y)} = h(y) \]

4. The complete observations \(\{(\delta = 1, y_i, x_i)\}_{i=1}^{n_1} \) have density

\[f(y|\delta = 1, x) = \frac{h(y)f(y|x, \beta)}{\int h(y)f(y|x, \beta)dy} = w(y)f(y|x, \beta) \neq f(y|x, \beta) \]

5. Missing at random (MAR): Missing probability

\[P(\delta = 1|y, x) = P(\delta = 1|x) = \frac{\exp(\alpha_0 + \alpha_1 x)}{1 + \exp(\alpha_0 + \alpha_1 x)} = h(x) \]

6. The complete observations \(\{(\delta = 1, y_i, x_i)\}_{i=1}^{n_1} \) have density

\[f(y|\delta = 1, x) = \frac{h(x)f(y|x, \beta)}{\int h(x)f(y|x, \beta)dx} = \frac{h(x)f(y|x, \beta)}{h(x)\int f(y|x, \beta)dx} = f(y|x, \beta) \]
Reaction Time Experiment
Reaction Time Experiment (2)

EE
Reaction time (RT) task problem
(Cruz-Medina et al., 2004)

1. \(N = 196 \) 9 years old children

2. Each child given \(m = 6 \) experiments, well separated in time

3. Each child’s RT’s, in millisecond are recorded

4. Groups of children represent different cognitive developmental stages

5. Cruz-Medina et al. (2004) found two groups

6. Interest is in the proportion of children in the two groups
Multivariate mixture model

1. Multivariate data \(\{(x_{i1}, x_{i2}, x_{i3})\}_{i=1}^n \) with density

\[
h(x_1, x_2, x_3) = \lambda f(x_1, x_2, x_3) + (1 - \lambda) g(x_1, x_2, x_3)
\]

2. \(X = (X_1, X_2, X_3) \) represents the different “test” results on an observation and \(\lambda \) is the mixture probability

3. Main interest is in the mixture proportion \(\lambda \)

4. Often no ”gold standard” or training samples

5. Parametric vs nonparametric analysis

6. Nonparametric models unidentifiable if the dimension of \(X \) is below 3 (Hall and Zhou, 2003)

\[
(x_1, x_2, x_3) \sim h(x_1, x_2, x_3) = \lambda f(x_1)f(x_2)f(x_3) + (1 - \lambda) g(x_1)g(x_2)g(x_3)
\]

i.e. given the group membership, components have independent and identical distributions
Semiparametric approach

1. No need for identically distributed components

2. No need to discretize the data

3. For the i-th component, assume the density ratio model (Anderson, 1979)

$$\frac{g_i(t)}{f_i(t)} = \exp(\alpha_i + \beta_i t + \gamma_i t^2) \Rightarrow g_i(t) = \underbrace{w(t)}_{\exp(\alpha_i + \beta_i t + \gamma_i t^2)} f_i(t)$$

4. Applications in malaria study (Qin and Leung, 2005), quantitative traits analysis (Zou, Fine and Yandell, 2003), melanoma study (Qin et al., 2002)

5. With the density ratio model, the joint density is

$$h(x_{i1}, x_{i2}, x_{i3}) = [\lambda + (1 - \lambda) \exp\{ \sum_{j=1}^{3} \alpha_j + \sum_{j=1}^{3} \beta_j x_{ij} + \sum_{j=1}^{3} \gamma_j x_{ij}^2 \}] \prod_{j=1}^{3} f_j(x_{ij})$$
Semiparametric approach (2)

1. The likelihood is

\[L = \prod_{i=1}^{n} \left[\lambda + (1 - \lambda) \exp\left\{ \sum_{j=1}^{3} \alpha_j + \sum_{j=1}^{3} \beta_j x_{ij} + \sum_{j=1}^{3} \gamma_j x_{ij}^2 \right\} \right] \prod_{j=1}^{3} dF_j(x_{ij}) \]

\[F_j(x_{ij}) = p_{ij} \text{ jumps at } x_{ij}, i = 1, 2, ..., n; j = 1, 2, 3 \]

2. The log-likelihood is

\[l = \sum_{i=1}^{n} \log[\lambda + (1 - \lambda) \exp\left\{ \sum_{j=1}^{3} \alpha_j + \sum_{j=1}^{3} \beta_j x_{ij} + \sum_{j=1}^{3} \gamma_j x_{ij}^2 \right\}] + \sum_{j=1}^{3} \sum_{i=1}^{n} \log p_{ij} \]

3. For fixed \((\lambda, \alpha, \beta, \gamma)\), we maximize the \(p_{ij}\)'s subject to the constraints

\[\sum_{i=1}^{n} p_{ij} = 1, \quad p_{ij} \geq 0, \quad \sum_{i=1}^{n} p_{ij} \{\exp(\alpha_j + \beta_j x_{ij} + \gamma_i x_{ij}^2) - 1\} = 0 \]
Semiparametric approach (3)

1. We can use a Lagrange multiplier argument, which leads to

\[p_{ij} = \frac{1}{n} \frac{1}{1 + \eta_j \{\exp(\alpha_j + \beta_j x_{ij} + \gamma_j x_{ij}^2) - 1\}} , \]

where \(\eta_j \) is a Lagrange multiplier determined by the equation

\[\sum_{i=1}^{n} \frac{\exp(\alpha_j + \beta_j x_{ij} + \gamma_j x_{ij}^2) - 1}{1 + \eta_j \{\exp(\alpha_j + \beta_j x_{ij} + \gamma_j x_{ij}^2) - 1\}} = 0. \]

2. Substituting the \(p_{ij} \)'s back into the log-likelihood, we have a semiparametric log-likelihood

\[l(\lambda, \alpha, \beta, \gamma) = \sum_{i=1}^{n} \log[\lambda + (1 - \lambda) \exp\{\sum_{j=1}^{3} \alpha_j + \sum_{j=1}^{3} \beta_j x_{ij} + \sum_{j=1}^{3} \gamma_j x_{ij}^2\}] \]

\[- \sum_{j=1}^{3} \sum_{i=1}^{n} \log\{1 + \eta_j \{\exp(\alpha_j + \beta_j x_{ij} + \gamma_j x_{ij}^2) - 1\}\} \]

The underlying parameters can be estimated by maximizing \(l \) with respect to \(\lambda, \alpha, \beta, \gamma \).
Semiparametric approach (4)

1. The joint cumulative distribution can be estimated by

\[
\hat{H}(t_1, t_2, t_3) = \hat{\lambda} \hat{F}(t_1, t_2, t_3) + (1 - \hat{\lambda}) \hat{G}(t_1, t_2, t_3)
\]

where

\[
\hat{F}(t_1, t_2, t_3) = \frac{n}{\sum_{j=1}^{n} I(x_{1j} \leq t_1, x_{2j} \leq t_2, x_{3j} \leq t_3) \hat{p}_{1j} \hat{p}_{2j} \hat{p}_{3j}}
\]

\[
\hat{G}(t_1, t_2, t_3) = \frac{n}{\sum_{j=1}^{n} I(x_{1j} \leq t_1, x_{2j} \leq t_2, x_{3j} \leq t_3) \hat{p}_{1j} \hat{p}_{2j} \hat{p}_{3j} \exp\left\{\sum_{i=1}^{3} \hat{\alpha}_i + \sum_{i=1}^{3} \hat{\beta}_i x_{ij} \sum_{i=1}^{3} \hat{\gamma}_i x_{ij}^2\right\}}
\]

2. The marginal distributions \(F_i \) and \(G_i \) can be estimated by

\[
\hat{F}_i(t) = \sum_{j=1}^{n} \hat{p}_{ij} I(x_{ij} \leq t), \quad \hat{G}_i(t) = \sum_{j=1}^{n} \hat{p}_{ij} \exp(\alpha_i + \beta_i x_{ij} + \gamma_i x_{ij}^2) I(x_{ij} \leq t)
\]
Semiparametric approach (5)

1. Difficult to maximize the semi-parametric likelihood

\[
l(\lambda, \alpha, \beta, \gamma) = \sum_{i=1}^{n} \log[\lambda + (1 - \lambda) \exp\{\sum_{j=1}^{3} \alpha_j + \sum_{j=1}^{3} \beta_j x_{ij} + \sum_{j=1}^{3} \gamma_j x_{ij}^2\}] \\
- \sum_{j=1}^{3} \sum_{i=1}^{n} \log\{1 + \eta_j[\exp(\alpha_j + \beta_j x_{ij} + \gamma_j x_{ij}^2) - 1]\}
\]

2. Use a semi-parametric EM algorithm

3. If \((d_i, x_{i1}, x_{i2}, x_{i3})\) are observed,

\[
\ell_F(\xi) = \sum_{i=1}^{n} [d_i \log \lambda + (1 - d_i) \log(1 - \lambda)] + \sum_{i=1}^{n} \sum_{j=1}^{3} [\log p_{ij} + (1 - d_i)(\alpha_j + \beta_j x_{ij} + \gamma_j x_{ij}^2)],
\]

where \(\xi = (\lambda, \theta_1 = (\alpha_1, \beta_1, \gamma_1), \theta_2 = (\alpha_2, \beta_2, \gamma_2), \theta_3 = (\alpha_3, \beta_3, \gamma_3), \eta = (\eta_1, \eta_2, \eta_3))\)

4. Given the current estimate \(\xi^k = (\lambda^k, \theta_1^k, \theta_2^k, \theta_3^k)\) and conditional on the observed data gives

\[
E(\ell_F(\xi)|\xi^k) = \sum_{i=1}^{n} [w_i^k \log \lambda^k + (1 - w_i^k) \log(1 - \lambda^k)] + \sum_{j=1}^{3} \sum_{i=1}^{n} [\log p_{ij} + (1 - w_i^k)(\alpha_j^k + \beta_j^k x_{ij} + \gamma_j^k x_{ij}^2)],
\]

where

\[
w_i^k = \frac{\lambda^k}{\lambda^k + (1 - \lambda^k) \exp\{\sum_{j=1}^{3} (\alpha_j^k + \beta_j^k x_{ij} + \gamma_j^k x_{ij}^2)\}}.
\]
Semiparametric approach (6)

1. Imposing the constraints

\[
\sum_{i=1}^{n} p_{ij} = 1, \quad p_{ij} \geq 0, \quad \sum_{i=1}^{n} p_{ij} \{\exp(\alpha_j + \beta_j x_{ij} + \gamma_j x_{ij}^2) - 1\} = 0,
\]

gives a profilled "Expected" log-likelihood

\[
E(\ell_F(\xi)|\xi^k) = \sum_{i=1}^{n} [w_i^k \log \lambda + (1 - w_i^k) \log(1 - \lambda)] + \sum_{j=1}^{3} \sum_{i=1}^{n} (1 - w_i^k)(\alpha_j + \beta_j x_{ij} + \gamma_j x_{ij}^2)
\]

\[
- \sum_{j=1}^{3} \sum_{i=1}^{n} \log[1 + \eta_j \{\exp(\alpha_j + \beta_j x_{ij} + \gamma_j x_{ij}^2) - 1\}].
\]

For given \(w_i^k\), maximizing \(\ell_P\) with respect to \((\lambda, \alpha_j, \beta_j, \gamma_j)\) gives \(\xi^{k+1}\)

2. Update

\[
w_i^{k+1} = \frac{\lambda^{k+1}}{\lambda^{k+1} + (1 - \lambda^{k+1}) \exp\{\sum_{j=1}^{3} (\alpha_j^{k+1} + \beta_j^{k+1} x_{ij} + \gamma_j^{k+1} x_{ij}^2)\}}.
\]

3. Iterate Steps 1 and 2 until convergence
Reaction time (RT) task problem

1. For illustration, we use the first three test results (components) from Cruz-Medina et al.’s (2004) data

2. The first and second components are significantly different ($p = 0.000226$) ⇒ identically distribution assumption not valid

3. Monotonic transform of the original data

$$Y_{ij} = \{\log(X_{ij}) - a\}/b, \ i = 1, 2, \ldots, 197; \ j = 1, 2, 3$$

where a, b are mean and sd of $\log(X_{ij}), \ i = 1, 2, \ldots, 197; \ j = 1, 2, 3$

4. We applied the density ratio model to the transformed data

5. $\hat{\lambda} = 0.568$ (95% CI 0.420 to 0.705)
Figure 1: Histograms of observed components 1, 2 and 3
Figure 2: Semiparametric estimation of $F_i, G_i, i = 1, 2, 3$
Figure 3: Empirical and semiparametric estimation of $H_i, i = 1, 2, 3$
Simulation Results

1. Trivariate normal mixture model:

\[(x_1, x_2, x_3) \sim \lambda N(0, 1)N(0, 1)N(0, 1) + (1 - \lambda)N(\mu_1, \sigma_1^2)N(\mu_2, \sigma_2^2)N(\mu_3, \sigma_3^2)\]

2. Small separation: \((\mu_1, \mu_2, \mu_3) = (1, 1.5, 2.5), (\sigma_1^2, \sigma_2^2, \sigma_3^2) = (1, 1, 1)\)

 Large separation: \((\mu_1, \mu_2, \mu_3) = (2, 2.5, 3), (\sigma_1^2, \sigma_2^2, \sigma_3^2) = (1.5, 2, 1)\)

3. 250 simulations each with \(n = 500, n = 1000\)

4. Comparison to MLE
Mean (variance) of the parametric and semiparametric estimates based on 250 simulations, sample size=1000.

\[(X, Y, Z) \sim \lambda N(0, 1)N(0, 1)N(0, 1) + (1 - \lambda)N(1, 1)N(1.5, 1)N(2.5, 1)\]

<table>
<thead>
<tr>
<th>True Estimate</th>
<th>(\lambda = 0.3)</th>
<th>(\lambda = 0.5)</th>
<th>(\lambda = 0.8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- (\hat{\lambda})</td>
<td>0.30082 (0.00047)</td>
<td>0.50009 (0.00049)</td>
<td>0.80015 (0.00043)</td>
</tr>
<tr>
<td>- (\hat{\lambda}_F)</td>
<td>0.30322 (0.00025)</td>
<td>0.50453 (0.00027)</td>
<td>0.80245 (0.00025)</td>
</tr>
<tr>
<td>-0.5 (\hat{\alpha}_1)</td>
<td>-0.50562 (0.00527)</td>
<td>-0.51543 (0.00472)</td>
<td>-0.52636 (0.01183)</td>
</tr>
<tr>
<td>- (\hat{\alpha}_{F1})</td>
<td>-0.49851 (0.00382)</td>
<td>-0.50667 (0.00564)</td>
<td>-0.54619 (0.02442)</td>
</tr>
<tr>
<td>1 (\hat{\beta}_1)</td>
<td>1.01779 (0.01557)</td>
<td>1.03180 (0.01529)</td>
<td>1.06606 (0.04352)</td>
</tr>
<tr>
<td>- (\hat{\beta}_{F1})</td>
<td>0.98398 (0.01317)</td>
<td>0.99389 (0.01774)</td>
<td>1.06254 (0.06971)</td>
</tr>
<tr>
<td>0 (\hat{\gamma}_1)</td>
<td>0.00127 (0.00662)</td>
<td>-0.00078 (0.00563)</td>
<td>-0.01970 (0.01034)</td>
</tr>
<tr>
<td>- (\hat{\gamma}_{F1})</td>
<td>-0.00232 (0.00844)</td>
<td>-0.00141 (0.00793)</td>
<td>-0.02772 (0.01729)</td>
</tr>
<tr>
<td>-1.125 (\hat{\alpha}_2)</td>
<td>-1.16680 (0.01393)</td>
<td>-1.16635 (0.01338)</td>
<td>-1.21708 (0.05504)</td>
</tr>
<tr>
<td>- (\hat{\alpha}_{F2})</td>
<td>-1.13784 (0.01847)</td>
<td>-1.14315 (0.02075)</td>
<td>-1.19579 (0.09433)</td>
</tr>
<tr>
<td>1.5 (\hat{\beta}_2)</td>
<td>1.55555 (0.04556)</td>
<td>1.54390 (0.04697)</td>
<td>1.59298 (0.12831)</td>
</tr>
<tr>
<td>- (\hat{\beta}_{F2})</td>
<td>1.49737 (0.02717)</td>
<td>1.49921 (0.03325)</td>
<td>1.55584 (0.12707)</td>
</tr>
<tr>
<td>0 (\hat{\gamma}_2)</td>
<td>0.00674 (0.01685)</td>
<td>0.00323 (0.01216)</td>
<td>-0.00901 (0.01926)</td>
</tr>
<tr>
<td>- (\hat{\gamma}_{F2})</td>
<td>-0.00481 (0.00776)</td>
<td>-0.01202 (0.00542)</td>
<td>-0.01840 (0.01337)</td>
</tr>
<tr>
<td>-3.125 (\hat{\alpha}_3)</td>
<td>-3.27271 (0.32721)</td>
<td>-3.23815 (0.40743)</td>
<td>-3.41140 (1.28678)</td>
</tr>
<tr>
<td>- (\hat{\alpha}_{F3})</td>
<td>-3.12622 (0.04783)</td>
<td>-3.14263 (0.05807)</td>
<td>-3.31905 (0.30482)</td>
</tr>
<tr>
<td>2.5 (\hat{\beta}_3)</td>
<td>2.63104 (0.68137)</td>
<td>2.60930 (0.78394)</td>
<td>2.69273 (1.54765)</td>
</tr>
<tr>
<td>- (\hat{\beta}_{F3})</td>
<td>2.46494 (0.08358)</td>
<td>2.47943 (0.11337)</td>
<td>2.74958 (0.54392)</td>
</tr>
<tr>
<td>0 (\hat{\gamma}_3)</td>
<td>0.00236 (0.11023)</td>
<td>-0.01118 (0.10637)</td>
<td>-0.01988 (0.13486)</td>
</tr>
<tr>
<td>- (\hat{\gamma}_{F3})</td>
<td>-0.01394 (0.00905)</td>
<td>-0.01474 (0.00755)</td>
<td>-0.05948 (0.01997)</td>
</tr>
</tbody>
</table>
Mean (variance) of the parametric and semiparametric estimates based on 250 simulations, sample size=1000.

\[(X, Y, Z) \sim \lambda N(0, 1)N(0, 1)N(0, 1) + (1 - \lambda)N(2.0, 1.5)N(2.5, 2)N(3.0, 1)\]

<table>
<thead>
<tr>
<th>True Estimate</th>
<th>$\lambda = 0.3$</th>
<th>$\lambda = 0.5$</th>
<th>$\lambda = 0.8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\lambda}$</td>
<td>0.30074 (0.00026)</td>
<td>0.50144 (0.00028)</td>
<td>0.79971 (0.00020)</td>
</tr>
<tr>
<td>$\hat{\lambda}_F$</td>
<td>0.30281 (0.00021)</td>
<td>0.50442 (0.00023)</td>
<td>0.80029 (0.00016)</td>
</tr>
<tr>
<td>$\hat{\alpha}_1$</td>
<td>-1.53862 (0.01113)</td>
<td>-1.56951 (0.01192)</td>
<td>-1.58445 (0.03663)</td>
</tr>
<tr>
<td>$\hat{\alpha}_{F1}$</td>
<td>-0.97706 (0.01649)</td>
<td>-1.01759 (0.04451)</td>
<td>-1.02214 (0.08872)</td>
</tr>
<tr>
<td>$\hat{\alpha}_2$</td>
<td>1.35424 (0.02243)</td>
<td>1.36952 (0.02886)</td>
<td>1.39207 (0.07640)</td>
</tr>
<tr>
<td>$\hat{\beta}_1$</td>
<td>0.96076 (0.01731)</td>
<td>0.99896 (0.03973)</td>
<td>1.00075 (0.07700)</td>
</tr>
<tr>
<td>$\hat{\beta}_{F1}$</td>
<td>0.16474 (0.00768)</td>
<td>0.15600 (0.01174)</td>
<td>0.15923 (0.02107)</td>
</tr>
<tr>
<td>$\hat{\gamma}_1$</td>
<td>0.24323 (0.00345)</td>
<td>0.24662 (0.00417)</td>
<td>0.25286 (0.00898)</td>
</tr>
<tr>
<td>$\hat{\gamma}_{F1}$</td>
<td>-1.95385 (0.01900)</td>
<td>-1.98385 (0.06357)</td>
<td>-2.00770 (0.10458)</td>
</tr>
<tr>
<td>$\hat{\gamma}_2$</td>
<td>-0.86195 (0.01213)</td>
<td>-0.93308 (0.01827)</td>
<td>-1.00566 (0.03812)</td>
</tr>
<tr>
<td>$\hat{\gamma}_{F2}$</td>
<td>1.28867 (0.02664)</td>
<td>1.28982 (0.04029)</td>
<td>1.32560 (0.09575)</td>
</tr>
<tr>
<td>$\hat{\beta}_2$</td>
<td>0.67836 (0.00925)</td>
<td>0.73100 (0.01407)</td>
<td>0.78783 (0.02331)</td>
</tr>
<tr>
<td>$\hat{\gamma}_3$</td>
<td>0.25576 (0.00989)</td>
<td>0.24927 (0.00878)</td>
<td>0.24005 (0.01269)</td>
</tr>
<tr>
<td>$\hat{\gamma}_{F3}$</td>
<td>0.35506 (0.00345)</td>
<td>0.34111 (0.00417)</td>
<td>0.34259 (0.00305)</td>
</tr>
<tr>
<td>$\hat{\alpha}_3$</td>
<td>-4.61913 (0.42892)</td>
<td>-4.69476 (0.57040)</td>
<td>-4.65478 (0.88890)</td>
</tr>
<tr>
<td>$\hat{\alpha}_{F3}$</td>
<td>-4.46534 (0.06361)</td>
<td>-4.48544 (0.07980)</td>
<td>-4.56179 (0.26862)</td>
</tr>
<tr>
<td>$\hat{\beta}_3$</td>
<td>3.13069 (0.82084)</td>
<td>3.15496 (0.93593)</td>
<td>3.06798 (1.14193)</td>
</tr>
<tr>
<td>$\hat{\gamma}_3$</td>
<td>2.94575 (0.09337)</td>
<td>2.93681 (0.10696)</td>
<td>3.06447 (0.41936)</td>
</tr>
<tr>
<td>$\hat{\gamma}_{F3}$</td>
<td>0.00073 (0.01073)</td>
<td>0.01450 (0.00569)</td>
<td>-0.02310 (0.01414)</td>
</tr>
</tbody>
</table>