Cupping Computably Enumerable Degrees in the Difference Hierarchy

Wu Guohua
Nanyang Technological University
http://www.ntu.edu.sg/home/guohua
A set D is d.c.e. if there are c.e. sets B and C such that $D = B - C$. D is the difference of two c.e. sets.

A Turing degree is d.c.e. if it contains a d.c.e. set.

Every c.e. degree is d.c.e.

(Arlsanov) Every nonzero d.c.e. degree is cuppable. (cf. In R, there exist noncuppable degrees.)
A set D is d.c.e. if there are c.e. sets B and C such that $D = B - C$. D is the difference of two c.e. sets.
D.c.e. sets and d.c.e. degrees

- A set D is d.c.e. if there are c.e. sets B and C such that $D = B - C$. D is the difference of two c.e. sets.
- A Turing degree is d.c.e. if it contains a d.c.e. set.
D.c.e. sets and d.c.e. degrees

- A set D is d.c.e. if there are c.e. sets B and C such that $D = B - C$. D is the difference of two c.e. sets.
- A Turing degree is d.c.e. if it contains a d.c.e. set.
- Every c.e. degree is d.c.e..
A set D is d.c.e. if there are c.e. sets B and C such that $D = B - C$. D is the difference of two c.e. sets.

A Turing degree is d.c.e. if it contains a d.c.e. set.

Every c.e. degree is d.c.e..

(Arslanov) Every nonzero d.c.e. degree is cuppable.
D.c.e. sets and d.c.e. degrees

- A set D is d.c.e. if there are c.e. sets B and C such that $D = B \setminus C$. D is the difference of two c.e. sets.
- A Turing degree is d.c.e. if it contains a d.c.e. set.
- Every c.e. degree is d.c.e..
- (Arslanov) Every nonzero d.c.e. degree is cuppable.
 (cf. In \mathcal{R}, there exist noncuppable degrees.)
Proof

• Given A (c.e. set) incomputable. We will construct an incomplete d.c.e. set D and a computable functional Γ such that $K = \Gamma^{A,D}$, where K is a fixed creative set.
Proof

- Given A (c.e. set) incomputable. We will construct an incomplete d.c.e. set D and a computable functional Γ such that $K = \Gamma^{A,D}$, where K is a fixed creative set.

$\mathcal{R}: K = \Gamma^{A,D}$.

$\mathcal{P}_e: E \neq \Phi^D_e$.
\(R: \)
\mathcal{R}:

\mathcal{R} works to extend the definition of $\Gamma^{A,D}$.
\(\mathcal{R} \):

\(\mathcal{R} \) works to extend the definition of \(\Gamma^{A,D} \).

- If \(n \) enters \(K \), and we want to rectify \(\Gamma^{A,D}(n) \) (defined as 0) at stage \(s \), we put \(\gamma(n)[s] \) (or smaller) into \(D \), to undefine \(\Gamma^{A,D}(n) \).
\(\mathcal{R} \):

\(\mathcal{R} \) works to extend the definition of \(\Gamma^{A,D} \).

- If \(n \) enters \(K \), and we want to rectify \(\Gamma^{A,D}(n) \) (defined as 0) at stage \(s \), we put \(\gamma(n)[s] \) (or smaller) into \(D \), to undefine \(\Gamma^{A,D}(n) \).

- If \(A \) changes blow \(\gamma(n)[s] \) after stage \(s \), then we can take \(\gamma(n)[s] \) out of \(D \) since this \(A \) change can undefine \(\Gamma^{A,D}(n) \).
P:

Step 1: Choose x and k. If K changes below k, then we start from the beginning, except that we keep k the same.

Such a refresh (or reset) procedure can happen at most k many times.

k is called a "threshold" of P.

Step 2: Wait for $D(x)$ to converge to 0.

Step 3: Put $\circ(k)$ into D. Go back to step 2, and simultaneously, wait for A to change below $\circ(k)$.

Step 4: Take $\circ(k)$ out of D and put x into E.
\mathcal{P}:

- **Step 1**: Choose x and k.
 If K changes below k, then we start from the beginning, except that we keep k the same.
 ✷ Such a refresh (or reset) procedure can happen at most k many times.
 ✷ k is called a “threshold” of \mathcal{P}.
\(\mathcal{P} \):

- **Step 1**: Choose \(x \) and \(k \).

 If \(K \) changes below \(k \), then we start from the beginning, except that we keep \(k \) the same.

 ✷ Such a refresh (or reset) procedure can happen at most \(k \) many times.

 ✷ \(k \) is called a “threshold” of \(\mathcal{P} \).

- **Step 2**: Wait for \(\Phi^D(x) \) to converge to 0.
P:

- **Step 1**: Choose x and k.

 If K changes below k, then we start from the beginning, except that we keep k the same.

 ◊ Such a refresh (or reset) procedure can happen at most k many times.
 ◊ k is called a “threshold” of P.

- **Step 2**: Wait for $\Phi^D(x)$ to converge to 0.

- **Step 3**: Put $\gamma(k)$ into D. Go back to step 2, and simultaneously, wait for A to change below $\gamma(k)$.

\(\mathcal{P} \):

- **Step 1**: Choose \(x \) and \(k \).

 If \(K \) changes below \(k \), then we start from the beginning, except that we keep \(k \) the same.

 ◊ Such a refresh (or reset) procedure can happen at most \(k \) many times.

 ◊ \(k \) is called a “threshold” of \(\mathcal{P} \).

- **Step 2**: Wait for \(\Phi^D(x) \) to converge to 0.

- **Step 3**: Put \(\gamma(k) \) into \(D \). Go back to step 2, and simultaneously, wait for \(A \) to change below \(\gamma(k) \).

- **Step 4**: Take \(\gamma(k) \) out of \(D \) and put \(x \) into \(E \).
Outcomes of \mathcal{P}:
Outcomes of \mathcal{P}:

- Stop at step 2. \mathcal{P} is satisfied.
Outcomes of \mathcal{P}:

- Stop at step 2. \mathcal{P} is satisfied.

- Reach step 4 eventually. Again, \mathcal{P} is satisfied.
Outcomes of \mathbf{P}:

- Stop at step 2. \mathbf{P} is satisfied.
- Reach step 4 eventually. Again, \mathbf{P} is satisfied.
- Stop at step 3 infinitely many times. Then \mathbf{A} is computable, which can be called a pseudo-outcome of \mathbf{P}.

Nondensity Theorem
Nondensity Theorem

- (Cooper, Harrington, Lachlan, Lempp and Soare)
Nondensity Theorem

- (Cooper, Harrington, Lachlan, Lempp and Soare)

There is a maximal incomplete d.c.e. degree.
From nondensity to almost universal cupping

- An incomplete d.c.e. degree is almost universal cupping if it cups each c.e. degree not below it to $0'$.
From nondensity to almost universal cupping

- An incomplete d.c.e. degree is almost universal cupping if it cups each c.e. degree not below it to $0'$.

- Between almost universal cupping degree and $0'$, there are no c.e. degrees.
From nondensity to almost universal cupping

- An incomplete d.c.e. degree is almost universal cupping if it cups each c.e. degree not below it to $0'$.

- Between almost universal cupping degree and $0'$, there are no c.e. degrees.

- There is no d.c.e. universal cupping degree.
An incomplete d.c.e. degree is **almost universal cupping** if it cups each c.e. degree not below it to $0'$.

Between almost universal cupping degree and $0'$, there are no c.e. degrees.

There is no d.c.e. universal cupping degree.

Maximal incomplete degrees are almost universal cupping.
Theorem 1

Almost universal cupping degrees exist.
Proof

We will construct a d.c.e. set A such that for each c.e. set W, either A cups W to K or A computes W.

– p. 10/21
Proof

We will construct a d.c.e. set A such that for each c.e. set W, either A cups W to K or A computes W.

\[R_e : K = \Gamma_e^{A,W_e} \text{ or } W_e = \Delta_e^A. \]
Proof

We will construct a d.c.e. set \(A \) such that for each c.e. set \(W \), either \(A \) cups \(W \) to \(K \) or \(A \) computes \(W \).

\[\mathcal{R}_e: K = \Gamma_{e}^{A,W_e} \text{ or } W_e = \Delta_{e}^{A}. \]

\[\mathcal{P}_e: E \neq \Phi_{e}^{A}. \]
Proof

We will construct a d.c.e. set A such that for each c.e. set W, either A cups W to K or A computes W.

$\mathcal{R}_e: K = \Gamma_{e,We}^A$ or $W_e = \Delta_e^A$.

$\mathcal{P}_e: E \neq \Phi_e^A$.

• Compare with Arslanov’s requirements.
Interactions between strategies

Similar to the proof of Arslanov’s cupping theorem. (Oracle A in \mathcal{A} seems not necessary in this special case.)

Consider the interactions of two P strategies.

Two ways to get around the obstacle:

1. Make A !-c.e. and universal cupping (Li, Song and Wu)
2. Make A d.c.e. but \mathcal{A} is now necessary.
Interactions between strategies

• One \mathcal{R} and one \mathcal{P}.

Similar to the proof of Arslanov’s cupping theorem. (Oracle \mathcal{A} in \mathcal{C} \mathcal{A} seems not necessary in this special case.)

Consider the interactions of two \mathcal{P} strategies.

Two ways to get around the obstacle.

§ Make $\mathcal{A} \not\in$-c.e. and universal cupping (Li, Song and Wu)

§ Make \mathcal{A} d.c.e. but $\mathcal{C} \mathcal{A}$ is now necessary.
Interactions between strategies

- One \mathcal{R} and one \mathcal{P}.
 Similar to the proof of Arslanov’s cupping theorem. (Oracle A in Δ^A seems not necessary in this special case.)
Interactions between strategies

- One \mathcal{R} and one \mathcal{P}.
 Similar to the proof of Arslanov’s cupping theorem. (Oracle A in Δ^A seems not necessary in this special case.)

- Consider the interactions of two \mathcal{P} strategies.
Interactions between strategies

- One \mathcal{R} and one \mathcal{P}.
 Similar to the proof of Arslanov’s cupping theorem. (Oracle A in Δ^A seems not necessary in this special case.)

- Consider the interactions of two \mathcal{P} strategies.
- Two ways to get around the obstacle.
Interactions between strategies

- One \mathcal{R} and one \mathcal{P}.
 Similar to the proof of Arslanov’s cupping theorem. (Oracle A in Δ^A seems not necessary in this special case.)

- Consider the interactions of two \mathcal{P} strategies.
- Two ways to get around the obstacle.
 - Make A ω-c.e. and universal cupping (Li, Song and Wu)
 - Make A d.c.e. but Δ^A is now necessary.
A nonzero c.e. degree has plus-cupping property if any nonzero c.e. degree below it can be cupped to 0.

If c cups b to 0 then b is called a cupping partner of c.

How many cupping partners are needed in this definition?

Answer: infinite.
A nonzero c.e. degree has plus-cupping property if any nonzero c.e. degree below it can be cupped to $0'$. How many cupping partners are needed in this definition?

Answer: infinite.
• A nonzero c.e. degree has plus-cupping property if any nonzero c.e. degree below it can be cupped to $0'$.

• If c cups b to $0'$ then b is called a **cupping partner** of c.

• How many cupping partners are needed in this definition?
A nonzero c.e. degree has plus-cupping property if any nonzero c.e. degree below it can be cupped to $0'$.

If c cups b to $0'$ then b is called a cupping partner of c.

How many cupping partners are needed in this definition?

Answer: infinite.
Three alternative approaches
Three alternative approaches

• (Slaman)

There are c.e. degrees $a > 0$, b, c, with $b \nleq c$ such that b cups any nonzero c.e. degree below a above c.
Three alternative approaches

• (Slaman)
There are c.e. degrees \(a > 0, b, c \), with \(b \nsubseteq c \) such that \(b \) cups any nonzero c.e. degree below \(a \) above \(c \).

• (Slaman)
There are c.e. degrees \(a, b > 0 \) such that for any \(c \leq a \), if \(c \nsubseteq b \), then \(c \cup b = 0' \).
Theorem 2 (Plus-cupping for d.c.e.)

There are a c.e. degree $a > 0$ and an incomplete d.c.e. degree d such that d cups each nonzero c.e. degree below a to 0.
Theorem 2 (Plus-cupping for d.c.e.)

There are a c.e. degree $a > 0$ and an incomplete d.c.e. degree d such that d cups each nonzero c.e. degree below a to $0'$.
Proof
Proof

\[Q_e: A \neq \Phi_e; \]
Proof

$Q_e: A \neq \Phi_e;$

$M_e: E \neq \Phi_e^D;$
Proof

\(Q_e: A \neq \Phi_e; \)

\(M_e: E \neq \Phi_e^D; \)

\(N_e: W_e = \Phi_e^A \implies K = \Gamma_e^{W_e,D} \) or \(W_e \) is computable.
Theorem 1+2

There are d.c.e. degrees $a; d$ such that if c is a nonzero c.e. degree below a then $c[d] = 0$, and if c is a c.e. degree not below a then $c[a] = 0$.

Consider the interactions of these two arguments.
There are d.c.e. degrees a, d such that if c is a nonzero c.e. degree below a then $c \cup d = 0'$, and if c is a c.e. degree not below a then $c \cup a = 0'$.
Theorem 1+2

There are d.c.e. degrees a, d such that if c is a nonzero c.e. degree below a then $c \cup d = 0'$, and if c is a c.e. degree not below a then $c \cup a = 0'$.

- Consider the interactions of these two $0'''$ arguments.
Compare with Li-Yi’s cupping
Compare with Li-Yi’s cupping

(Li and Yi) There are two d.c.e. degrees b, d such that any nonzero c.e. degree cups one of them to $0'$.
Compare with Li-Yi’s cupping

(Li and Yi) There are two d.c.e. degrees b, d such that any nonzero c.e. degree cups one of them to 0'.

\(\mathcal{R} \): \(W \) is computable, or \(W \) cups \(B \) to \(K \), or \(W \) cups \(D \) to \(K \).
Compare with Li-Yi’s cupping

(Li and Yi) There are two d.c.e. degrees b, d such that any nonzero c.e. degree cups one of them to $0'$.

R: W is computable, or W cups B to K, or W cups D to K.

Theorem 1+2 implies Li and Yi’s cupping. Extra properties.
(Li and Yi) There are two d.c.e. degrees b, d such that any nonzero c.e. degree cups one of them to $0'$.

\mathcal{R}: W is computable, or W cups B to K, or W cups D to K.

Theorem 1+2 implies Li and Yi’s cupping. Extra properties.

Li and Yi’s cupping implies Theorem 2.
More consequences
More consequences

- Arslanov’s cupping theorem
More consequences

- Arslanov’s cupping theorem
- Downey’s diamond embedding
More consequences

- Arslanov’s cupping theorem
- Downey’s diamond embedding
- N_5 embedding
More cupping
More cupping

(1) There are intervals of d.c.e. degrees containing exactly one c.e. degree.
More cupping

(1) There are intervals of d.c.e. degrees containing exactly one c.e. degree.

(2) These c.e. degrees are dense in the high c.e. degrees.
More cupping

(1) There are intervals of d.c.e. degrees containing exactly one c.e. degree.

(2) These c.e. degrees are dense in the high c.e. degrees.

(3) These c.e. degrees can be low.
Questions

- In Theorem 1+2, can we have the almost universal cupping there maximal?
Questions

• In Theorem 1+2, can we have the almost universal cupping there maximal?

• How to define computably enumerable degrees in the Δ^0_2 degrees?
Thank you!