The orig. construction of the Q-curv. seeks to imitate

Yamabe eqn. in dim. $n \geq 3$ \longrightarrow

Gauss curv. prescription eqn. (GCP) in dim. 2.

It’s closely related to the GJMS operators P_m. To some extent, the construction can go either way (P's to Q's or Q's to P's). There are now constructions of Q that are genuinely different than the original one we’ll discuss here (in which Q comes from the GJMS series).

Let everything as acting on functions (0-densities) on an n-dimensional manifold M.
The {\bf Graham-Jenne-Mason-Sparling} (GJMS) operators [{\it J. London Math. Soc. 1992}] were built using the {\bf Fefferman-Graham ambient construction}, and by careful analysis of the construction, have the properties in the following (redundant) list. Here \(n \) is not nec. even.

- \(P_m \) exists for \(m \) even and \(m - n \notin 2\mathbb{Z}^+ \).
- \(P_m = \Delta^{m/2} + \text{LOT} \).
- \(P_m \) is formally self-adjoint.
- For \(f \in C^\infty(M) \), under a conformal change of metric
 \[
 \hat{g} = e^{2\omega} g, \quad \omega \in C^\infty(M),
 \]
 we have the conformal covariance relation
 \[
 \hat{P}_m f = e^{-\frac{n+m}{2}\omega} P_m (e^{\frac{n-m}{2}\omega} f).
 \]
Alternatively, P_m gives rise to a conformally invariant operator $P_m : \mathcal{E}[-(n - m)/2] \to \mathcal{E}[-(n + m)/2]$.

P_m has a polynomial expression in ∇ and the Riemann tensor (actually the Ricci tensor, according to a recent result of Graham) in which all coefficients are rational in the dimension n.

Gover and Peterson, CMP 2003 show that there’s an expression in which the only poles are given by factors $(n - 2)(n - 4) \cdots (n - m + 2)$ in the denominators of these rational functions.

On flat \mathbb{R}^n, $P_m = \Delta^{n/2}$.

• P_m has the form

$$\delta S_m d + \frac{n - m}{2} Q_m,$$

where Q_m is a local scalar invariant, and S_m is an operator on 1-forms of the form

$$(d\delta)^{m/2-1} + \text{LOT} \text{ or } \Delta^{m/2-1} + \text{LOT}.$$

All the formulas mentioned above are universal.

Note that P_m is unable to detect changes in the $(d\delta)^{m/2-1}$ term in the principal part of S_m.

Remark P_m gives rise to a Q_m in an elementary way (just take P_m1) when $m \neq n$. But the really important Q is $Q = Q_n$.
Remark \(P_2 \) is the conformal Laplacian
\[
Y = \frac{\delta d}{\Delta} + \frac{n-2}{4(n-1)} K.
\]
This makes
\[
Q_2 = \frac{K}{2(n-1)} =: J,
\]
(the Schouten scalar).

Here’s an intuitive approach (more formal approach later) to constructing the Q-curvature. The Yamabe eqn. is
\[
\left(\Delta + \frac{n-2}{2} J \right) u = \frac{n-2}{2} \hat{J} u \frac{(n+2)/(n-2)}{2},
\]
where
\[
\hat{g} = e^{2\omega} g, \quad \omega \in C^\infty(M), \quad u := e^{(n-2)\omega/2}.
\]
The GCP eqn. is
\[
\Delta \omega + J = \hat{J} e^{2\omega} \quad (n = 2).
\]
We get GCP from the Yamabe eqn. by slipping in a gratuitous 1,

\[\Delta \left(e^{(n-2)\omega/2} - 1 \right) + \frac{n-2}{2} J e^{(n-2)\omega/2} \]

\[= \frac{n-2}{2} \hat{J} e^{(n+2)\omega/2}, \]

dividing by \((n-2)/2\), and eval. at \(n = 2\).

Similarly, take the higher-order Yamabe equation based on the **GJMS operators**,

\[\left(\delta S_m d + \frac{n-m}{2} Q_m \right) u = \frac{n-m}{2} \hat{Q}_m u^{(n+m)/(n-m)}, \]

where

\[u = e^{(n-m)\omega/2} \ (n \notin \{m, m-2, m-4, ..., 2, 0\}), \]

\[S_m = (d\delta)^{m/2-1} + \text{LOT}. \]
We slip in the gratuitous 1,

\[
\delta S_{md}(e^{(n-m)\omega/2} - 1) + \frac{n-m}{2} Q_m e^{(n-m)\omega/2}
\]

\[
= \frac{n-m}{2} \hat{Q}_m e^{(n+m)\omega/2},
\]

divide by \((n-m)/2\), and evaluate at \(n = m\):

\[
P\omega + Q = \hat{Q} e^{n\omega}.
\]

That is, we define \(Q\) from the GJMS op. series, as

\[
\left[\frac{2P_m 1}{n-m}\right]_{n=m}.
\]

This construction of \(Q\) immediately gives its unusual linear conformal change law.

Switching to a density viewpoint (more later on this), we have a conformally invariant operator \(P: \mathcal{E}[0] \to \mathcal{E}[-n]\), and \(Q \in \mathcal{E}[-n]\) satisfying

\[
\hat{Q} = Q + P\omega.
\]
For example, GCP looks like

\[\hat{J} = J + \Delta \omega \]

for \(J \) viewed as a \((-2)\)-density.

In hindsight, we have answered the

Question: Is there a higher (even) dimensional generalization of the exponential class Gauss curvature prescription problem \(\hat{J} = J + \Delta \omega \)?

But the Q-curvature also plays other important roles in conformal geometry, in that:
• Its integral has total metric variation the Fefferman-Graham obstruction tensor;

• It provides the geometric expression of the exponential class Beckner-Moser-Trudinger inequality;

• It provides the main term in Polyakov formulas for the quotient of functional determinants or torsion quantities, at 2 conformally related metrics;

• It provides one of the important terms in volume renormalization asymptotics at conformal infinity [Fefferman-Graham, MRL 2002].
Background: The Einstein (divergence free Ricci) tensor E is the total metric variation of the scalar curvature. This means that if we take a smooth curve of metrics $g(\varepsilon)$, denote $(d/d\varepsilon)|_{\varepsilon=0}$ by a \bullet, and suppose

$$g(0) = g, \quad g^\bullet = h,$$

then

$$\left(\int K \, dv_{g} \right)^\bullet = \int h^{ab} E_{ab} dv_{g}.$$

This is how the Einstein-Hilbert action leads to the Einstein equation.

Background: In dimension 4, the Bach tensor B is the total metric variation of $|C|^2$, where C is the Weyl tensor.
Question: In general even dimension n, the Fefferman-Graham tensor O_{ab} is the obstruction to the power series construction of the ambient metric assoc. to a conformal structure. Is O_{ab} the total metric variation of anything natural?

Answer: Yes, the Q-curvature, according to Graham-Hirachi, math.DG/0405068. In fact, for the $(-n)$-density version Q of the Q-curv.,

$$
\left(\int Q \right)^* = \int h^{ab} O_{ab} dv_g.
$$

This is sensible at least when h has compact support.
Background: Beckner’s [Ann. M. 1993] generalization, from S^2 to S^n, of the celebrated Moser-Trudinger inequality, says that with normalized measure on the sphere (and taking n even for simplicity),

$$\log \int_{S^n} e^{n(\omega - \bar{\omega})} \leq \frac{n}{2(n-1)!} \int_{S^n} \omega P \omega,$$

where

$$P = \Delta \{\Delta + n - 2\} \{\Delta + 2(n - 3)\} \cdot \{\Delta + 3(n - 4)\} \cdots \{\Delta + \frac{n}{2} \left(\frac{n}{2} - 1\right)\}.$$

Equality holds iff there is a diffeomorphism h of S^n for which $h^* g_{\text{round}} = e^{2\omega} g_{\text{round}}$.

Remark: See [Branson, JFA 1987] for an early sighting of the operator P.

Remark: (2D) Moser-Trudinger is
\[
\log \int_{S^2} e^{2(\omega - \bar{\omega})} \leq \int_{S^2} \omega \Delta \omega.
\]
But in higher dim., note that P is more delicate than just $\Delta^{n/2}$. Closely related inequalities figure in de Branges’ resolution of the Bieberbach conjecture (the Lebedev-Mihlin inequality), and Perelman’s work on the Poincaré conjecture (Gross’ logarithmic Sobolev inequality).

These are sharp endpoint derivatives of borderline Sobolev imbeddings, or duals of such.

Question: Is there an expression of Beckner’s inequality that just involves some local invariant? Something like the soln. of the Yamabe problem, which realizes the Sobolev imbedding $L^2_1 \hookrightarrow L^{2n/(n-2)}$ as the problem of mimimizing $\int K$ over volume 1 metrics?
Answer: For vol. 1 metrics $\hat{g} = e^{2\omega}g$, where $g = g_{\text{round}},$

$$0 \leq \int_{S^n} \omega(\hat{Q} + Q).$$

Remark: The borderline Sob. imbeddings are $L^2_r \hookrightarrow L^{2n/(n-2r)}$, and the Beckner-MT edge of the borderline is $L^2_{n/2} \hookrightarrow e^L$.

Remark: This gives a glimpse of an interesting 2-metric functional on a conformal class,

$$Q(\hat{g}, g) = \frac{1}{2} \int \omega(\hat{Q} + Q).$$

This is alternating, and satisfies the cocycle condition

$$Q(\hat{g}, g) = Q(\hat{g}, \hat{g}) + Q(\hat{g}, g)$$

for iterated conformal changes. Here $\hat{g} = e^{2\eta}\hat{g}$, $\hat{g} = e^{2\omega}g$, where ω and η are smooth functions.
Indeed,

\[Q(\hat{g}, \hat{g}) + Q(\hat{g}, g) = \]
\[\frac{1}{2} \int \eta (\hat{Q} + \hat{Q}) + \frac{1}{2} \int \omega (\hat{Q} + Q) = \]
\[\frac{1}{2} \int \eta \left(\frac{2\hat{Q} + \hat{P} \eta}{2(Q + P \omega) + P \eta} \right) + \frac{1}{2} \int \omega (2Q + P \omega) = \]
\[\frac{1}{2} \int (\omega + \eta) (2Q + P(\omega + \eta)) = \]
\[Q(\hat{g}, g). \]

The underbrace step used conformal invariance, \(\hat{P} = P \). The last step used the formal self-adjointness of \(P \) to equate

\[2 \int \eta P \omega \text{ and } \int \eta P \omega + \int \omega P \eta. \]

\(Q(g_1, g_2) \) is a cocycle whose variation (in \(g_1 \), in the \(\omega \) direction) is \(\int \omega Q_1 \).
Background: It’s known that there are Polyakov formulas expressing functional determinant quotients within a conformal class as differential polynomials in the conformal factor.

For example, let Y be the conformal Laplacian; then

$$- \log \frac{\det \hat{Y}}{\det Y} = \int_M \omega \text{polyn}(\nabla \cdots \nabla \omega, \nabla \cdots \nabla R) \geq 1$$

\ominus (global term)

in even dims., for $\hat{g} = e^{2\omega}g$. The global term vanishes if $\mathcal{N}(Y) = 0$ (a conformally invt. property); otherwise it records the variation of the global inner product on the null space.
Similarly with Y replaced by anything with decent elliptic and conformal behavior. This includes detour torsion quantities developed in recent joint work with Rod Gover, generalizing Cheeger’s half-torsion.

Question: Can the RHS above be expressed more invariantly?

Answer: In low even dims. (2,4,6), and conjecturally in all even dims., for A a power of a conformally covariant operator with suitable positive ellipticity properties,

$$- \log \frac{\det \hat{A}}{\det A} = c \int_M \omega(\hat{Q} + Q) + \int_M (\hat{F} - F) + \text{(global term)}$$

for some (universal) constant c, where F is some density-valued local invt. (which vary depending on what A is).