Less is More:
Sparsity in Principal Component Analysis
and in Linear Systems

Laurent El Ghaoui

EECS dept., UC Berkeley
Goals

• Examine *linear algebra problems with cardinality constraints*

• Develop new formulations, and corresponding convex relaxations

• New formulations may offer insights into problem

• Ultimate objective is to derive estimates of the quality of the convex relaxations
Outline

- Principal component analysis
- The sparse PCA problem
- New formulation and SDP relaxation
- Quality estimate
- Sparsity in linear systems
Principal component analysis

PCA is a classic tool in multivariate data analysis

- Input: a $n \times n$ covariance matrix Σ
- Output: a sequence of factors ranked by variance
- Each factor is a linear combination of the problem variables

Typical use: reduce the number of dimensions of a model while maximizing the information (variance) contained in the simplified model
Solving the PCA problem

- The PCA problem can be solved via the **eigenvalue decomposition** of the covariance matrix:

\[
\Sigma = \sum_{i=1}^{n} \lambda_i x_i x_i^T
\]

- \(\lambda_1 \geq \ldots \geq \lambda_n \geq 0\) are the eigenvalues of \(\Sigma\)

- The corresponding eigenvectors \(x_i\) are called the **principal components**, or factors.
PCA and rank-one approximation

- The first principal component, x_1, can be obtained via the solution to the rank-one approximation problem:

$$\min_z \| \Sigma - zz^T \|_F,$$

the solution of which is $z = \lambda_1 x_1 x_1^T$.

(Here, $\|A\|_F^2 = \text{Tr} A^T A$ denotes the Frobenius norm of a matrix A.)

- Above problem can be reduced to the variational problem:

$$\max_x x^T \Sigma x : \|x\|_2 = 1,$$

the solution of which is $x = x_1$.

Principal component analysis
Outline

- Principal component analysis
- *The sparse PCA problem*
- New formulation and SDP relaxation
- Quality estimate
- Sparsity in linear systems
Looking for sparse factors

Gene expression data analysis: ”explaining data with a few genes”

- PCA is used for clustering and visualizing data (gene responses vs. drugs)
- Principal axes represent a combination of genes that are important in explaining data
- The *sparser* the axes, the less genes are involved
- Ultimately, a short list of genes that explain data could yield a *universal diagnostic chip*
Clustering of gene expression data in the PCA versus sparse PCA basis with 500 genes. The factors f on the left are dense and each use all 500 genes while the sparse factors g_1, g_2 and g_3 on the right involve 6, 4 and 4 genes respectively. *(Data source: Iconix Pharmaceuticals, Inc.)*
Some previous work

- Vines (2000): restrict the factors' coefficients in a small set of integers, such as 0, 1, and −1

- Cadima and Jolliffe (1995): simple threshold approach

- Jolliffe and Udin (2003): SCoTLASS

- Zou, Hastie and Tibshirani (2004): write PCA as a regression problem, and add a l_1-norm penalty to it

Direct Sparse PCA

- **Cardinality-penalized variational problem:**

 $$\max_x x^T \Sigma x - \rho \|x\|_0 : \|x\|_2 = 1$$

 where $\rho > 0$, and $\|x\|_0$ denotes the number of non-zero elements in x

- Let $X = xx^T$, and approximate problem by

 $$\max_X \text{Tr} \Sigma X - \rho \|X\|_1 : X \succeq 0, \text{Tr} X = 1, \text{Rank}(X) = 1$$

 ($\| \cdot \|_1$ denotes sum of absolute values)

- Dropping the rank constraint leads to an SDP
Solving direct sparse PCA

- The direct sparse PCA problem

\[
\max_X \text{Tr} \Sigma X - \rho \|X\|_1 : X \succeq 0, \quad \text{Tr} X = 1
\]

can be solved as an SDP, via general-purpose interior-point methods

Complexity: \(O(n^6 \log(1/\epsilon)) \)

- For large-scale problems, first-order methods (Nesterov, 2005) can be used

Complexity: \(O(n^4 \sqrt{\log n}/\epsilon) \)
Problems with direct sparse PCA

- Direct sparse PCA relies on two relaxation steps:
 - *Lower bound on $\| \cdot \|_0$-norm:* via Cauchy-Schwartz inequality,
 \[\forall x, \|x\|_2 = 1 : \|x\|_0 \geq \|x\|_1^2 \]
 - *Rank relaxation:* lift $xx^T \rightarrow X$, and drop rank constraint on X

- Analysis of the *quality* of the approximation seems to be difficult
Outline

• Principal component analysis
• The sparse PCA problem
 • *New formulation and SDP relaxation*
• Quality estimate
• Sparsity in linear systems
Equality vs. inequality model

Sparse PCA problem:

\[
\phi := \max_x x^T \Sigma x - \rho \|x\|_0 : \|x\|_2 = 1
\]

We will develop SDP bounds for the related quantity:

\[
\tilde{\phi} := \max_x x^T \Sigma x - \rho \|x\|_0 : \|x\|_2 \leq 1
\]

Fact: (assume WLOG \(\Sigma_{11} \geq \ldots \geq \Sigma_{nn} \))

- If \(\rho \geq \Sigma_{11} \), then \(\tilde{\phi} = 0 \), \(\phi = \Sigma_{11} - \rho \) (with optimizer \(x^* = e_1 \))
- If \(\rho < \Sigma_{11} \), then \(\tilde{\phi} = \phi > 0 \)

In the sequel, assume \(\rho < \Sigma_{11} \)
Towards a new formulation

Our problem:
\[\phi := \max_x \ x^T \Sigma x - \rho \|x\|_0 : \|x\|_2 \leq 1 \]
(1)

We have

\[\phi = \max_{u \in \{0,1\}^n} \max_{y^T y \leq 1} y^T D(u) \Sigma D(u) y - \rho \cdot 1^T u, \]
(2)

where \(D(u) := \text{diag}(u) \)

- The boolean vector \(u \) represents the sparsity pattern of an optimal solution
- Optimal \((y, u)\) in (2) related to optimal \(x\) in (1) by
 \[x = D(u) y \]
Towards a new formulation (cont’d)

Eliminating y in (2), obtain

$$\phi = \max_x x^T \Sigma x - \rho \|x\|_0 : \|x\|_2 \leq 1$$

$$= \max_{u \in \{0,1\}^n} \max_{y^T y \leq 1} y^T D(u) \Sigma D(u) y - \rho \cdot 1^T u$$

$$= \max_{u \in \{0,1\}^n} \lambda_{\text{max}}(D(u) \Sigma D(u)) - \rho \cdot 1^T u$$

- Optimal y is an eigenvector corresponding to λ_{max} above
- Optimal x is $x = D(u) y$
Towards a new formulation (cont’d)

- **Cholesky decomposition**: Let $\Sigma = A^T A$, where $A = [a_1 \ldots a_n]$, with $a_i \in \mathbb{R}^m$, $i = 1, \ldots, n$, and $m = \text{Rank}(\Sigma)$

- Our previous formulation leads to a formulation based on *eigenvalue maximization*:

\[
\phi = \max_{u \in \{0,1\}^n} \lambda_{\text{max}}(D(u) A^T A D(u)) - \rho \cdot 1^T u
\]
Towards a new formulation (cont’d)

- **Cholesky decomposition**: Let \(\Sigma = A^T A \), where \(A = [a_1 \ldots a_n] \), with \(a_i \in \mathbb{R}^m \), \(i = 1, \ldots, n \), and \(m = \text{Rank}(\Sigma) \)

- Our previous formulation leads to a formulation based on **eigenvalue maximization**:

\[
\phi = \max_{u \in \{0,1\}^n} \lambda_{\text{max}}(D(u)A^T AD(u)) - \rho \cdot 1^T u
\]

\[
= \max_{u \in \{0,1\}^n} \lambda_{\text{max}}(AD(u)^2 A^T) - \rho \cdot 1^T u
\]
Towards a new formulation (cont’d)

- **Cholesky decomposition:** Let $\Sigma = A^T A$, where $A = [a_1 \ldots a_n]$, with $a_i \in \mathbb{R}^m$, $i = 1, \ldots, n$, and $m = \text{Rank}(\Sigma)$

- Our previous formulation leads to a formulation based on *eigenvalue maximization*:

\[
\phi = \max_{u \in \{0,1\}^n} \lambda_{\text{max}}(D(u)A^T AD(u)) - \rho \cdot 1^T u \\
= \max_{u \in \{0,1\}^n} \lambda_{\text{max}}(AD(u)^2 A^T) - \rho \cdot 1^T u \\
= \max_{u \in \{0,1\}^n} \lambda_{\text{max}}(AD(u)A^T) - \rho \cdot 1^T u
\]
Eigenvalue maximization problem

- Using the convexity of the largest eigenvalue function, we obtain the representation

$$\phi = \max_{u \in [0,1]^n} \lambda_{\text{max}} \left(\sum_{i=1}^{n} u_i a_i a_i^T \right) - \rho \cdot 1^T u.$$

- Set $B_i := a_i a_i^T - \rho \cdot I_m, i = 1, \ldots, n$, and express ϕ as

$$\phi = \max_{u \in [0,1]^n} \lambda_{\text{max}} \left(\sum_{i=1}^{n} u_i B_i \right),$$

- The computation of ϕ can be interpreted as a *eigenvalue maximization problem*, where the sparsity pattern u is the decision variable.
We have

\[
\phi = \max_{u \in [0,1]^n} \lambda_{\max} \left(\sum_{i=1}^n u_i B_i \right) \\
= \max_{u \in [0,1]^n} \max_{\xi^T \xi \leq 1} \xi^T \left(\sum_{i=1}^n u_i a_i a_i^T \right) \xi - \rho \cdot 1^T u \\
= \max_{\xi^T \xi \leq 1} \sum_{i=1}^n \left((a_i^T \xi)^2 - \rho \xi^T \xi \right)_+ \\
= \max_{\xi^T \xi = 1} \sum_{i=1}^n \left((a_i^T \xi)^2 - \rho \right)_+
\]
Try rank relaxation?

\[
\phi = \max_{\xi^T \xi = 1} \sum_{i=1}^{n} \left((a_i^T \xi)^2 - \rho \right)_+ \\
= \max_{X} \sum_{i=1}^{n} \left(a_i^T X a_i - \rho \right)_+ : X \succeq 0, \ Tr \ X = 1, \ \text{Rank}(X) = 1 \\
\leq \max_{X} \sum_{i=1}^{n} \left(a_i^T X a_i - \rho \right)_+ : X \succeq 0, \ Tr \ X = 1
\]

- Rank relaxation is actually exact (\(\leq\) is an equality) . . .

- . . . Unfortunately, it is useless as the rank-relaxed problem is still not convex!
Recovering the sparsity pattern

We have obtained

$$\phi = \max_{\xi^T\xi = 1} \sum_{i=1}^{n} ((a_i^T\xi)^2 - \rho)_{+}$$

- An optimal sparsity pattern u is obtained from an optimal solution ξ to the above problem by setting

$$u_i = \begin{cases} 1 & \text{if } (a_i^T\xi)^2 > \rho, \\ 0 & \text{otherwise} \end{cases}$$

Thus, for every i such that $\rho \geq a_i^T a_i$, we can always assume that the optimal sparsity pattern satisfies $u_i = 0$ \textit{(ignore a_i)}

- In the sequel, we assume WLOG $a_i^T a_i > \rho$ for every i
SDP relaxation

Our new formulation is (having set $B_i = a_i a_i^T - \rho \cdot I_m$):

$$
\phi = \max_{u \in [0,1]^n} \lambda_{\max}\left(\sum_{i=1}^{n} u_i B_i \right)
$$

SDP relaxation:

$$
\phi \leq \psi := \min_{(Y_i)_{i=1}^{n}} \lambda_{\max}\left(\sum_{i=1}^{n} Y_i \right) : Y_i \succeq B_i, \ Y_i \succeq 0, \ i = 1, \ldots, n
$$
SDP relaxation

Our new formulation is (having set \(B_i = a_i a_i^T - \rho \cdot I_m \)):

\[
\phi = \max_{u \in [0,1]^n} \lambda_{\text{max}} \left(\sum_{i=1}^{n} u_i B_i \right)
\]

SDP relaxation:

\[
\phi \leq \psi := \min_{(Y_i)_{i=1}^n} \lambda_{\text{max}} \left(\sum_{i=1}^{n} Y_i \right) : Y_i \succeq B_i, \ Y_i \succeq 0, \ i = 1, \ldots, n
\]

Proof: if \((Y_i)_{i=1}^n\) is feasible for the above SDP, then for every \(\xi \in \mathbb{R}^m\), \(\xi^T \xi \leq 1\), and \(u \in [0, 1]^n\), we have

\[
\xi^T \left(\sum_{i=1}^{n} u_i B_i \right) \xi \leq \sum_{i=1}^{n} (\xi^T B_i \xi)_+ \leq \xi^T \left(\sum_{i=1}^{n} Y_i \right) \xi \leq \psi
\]
Dual problem is

\[\psi = \max_{X, (P_i)_{i=1}^n} \sum_{i=1}^n \text{Tr} \, P_i B_i : X \succeq P_i \succeq 0, \ i = 1, \ldots, n, \ \text{Tr} \, X = 1 \]

\[= \max_X \sum_{i=1}^n \text{Tr} \left(X^{1/2} a_i a_i^T X^{1/2} - \rho X \right)_+ : X \succeq 0, \ \text{Tr} \, X = 1, \]

where \(\text{Tr} \, B_+ = \text{sum of non-negative eigenvalues of symmetric matrix} \ B \)
The bound \(\phi \leq \psi \) can also be inferred directly from the dual:

\[
\phi = \max_{\xi^T \xi = 1} \sum_{i=1}^{n} ((a_i^T \xi)^2 - \rho)_+
\]

\[
= \max_{X} \sum_{i=1}^{n} (a_i^T X a_i - \rho)_+ \quad : \ X \succeq 0, \ Tr \ X = 1, \ Rank(\ X) = 1
\]

\[
= \max_{X} \sum_{i=1}^{n} Tr \left(X^{1/2} a_i a_i^T X^{1/2} - \rho X \right)_+ \quad : \ X \succeq 0, \ Tr \ X = 1, \ Rank(\ X) = 1
\]

\[
\leq \max_{X} \left\{ \sum_{i=1}^{n} Tr \left(X^{1/2} a_i a_i^T X^{1/2} - \rho X \right)_+ \quad : \ X \succeq 0, \ Tr \ X = 1 \right\} = \psi
\]

If \(\text{Rank}(X) \leq 1 \) at the optimum of the dual problem, then \(\leq \) becomes an equality, and \(\phi = \psi \)
Outline

• Principal component analysis
• The sparse PCA problem
• New formulation and SDP relaxation
• Quality estimate
• Sparsity in linear systems
Quality of SDP relaxation (1)

(Inspired by Ben-Tal & Nemirovski, 2002)

Upper bound: \(\phi \leq \psi = \max_{X \succeq 0, \text{Tr} X = 1} \sum_{i=1}^{n} \text{Tr} \left(X^{1/2} a_i a_i^T X^{1/2} - \rho X \right) \)

- Let \(X \succeq 0, \text{Tr} X = 1 \), be optimal for \(\psi \), so that

\[
\psi = \sum_{i=1}^{n} \alpha_i,
\]

where

\[
B_i(X) := X^{1/2} B_i X^{1/2} = X^{1/2} (a_i a_i^T - \rho I) X^{1/2}, \quad \alpha_i := \text{Tr}(B_i(X)_+)
\]

- Let \(k := \text{Rank}(X) \), assume \(k > 1 \)
(Fix $i \in \{1, \ldots, n\}$, drop subscript on α_i, $B_i(X) = X^{1/2}(a_i a_i^T - \rho I)X^{1/2}$)

- In view of our assumption $\min_i a_i^T a_i > \rho$, $B(X)$ has exactly one positive eigenvalue, equal to $\alpha = \text{Tr} B_+$

- Denote by $-\beta_j$ ($\beta_j > 0$) the remaining non-zero eigenvalues; one can show that

$$\sum_{j=1}^{k-1} \beta_j \leq \rho.$$

- Assume $\xi \sim \mathcal{N}(0, I_m)$; by rotational invariance of the normal distribution:

$$\mathbf{E}(\xi^T B(X) \xi)_+ = \mathbf{E}\left(\alpha \xi_1^2 - \sum_{j=1}^{k-1} \beta_j \xi_j^2 \right)_+$$
Thus

\[E(\xi^T B(X) \xi)_+ \geq \min_{\beta \geq 0, \sum j \beta_j \leq \rho} E \left(\alpha \xi_1^2 - \sum_{j=1}^{k-1} \beta_j \xi_{j+1}^2 \right) + \]

\[= E \left(\alpha \xi_1^2 - \frac{\rho}{k-1} \sum_{j=1}^{k-1} \xi_{j+1}^2 \right) + \]

\[\geq \left(\alpha - \rho + \frac{2}{\pi} \sqrt{\alpha^2 + \frac{\rho^2}{k-1}} \right) + \]

Here we have used a result in Ben-Tal & Nemirovski (2002):

\[\forall \gamma \in \mathbb{R}^d : \ E \left| \sum_{i=1}^{d} \gamma_i \xi_i^2 \right| \geq \frac{2}{\pi} \left\| \gamma \right\|_2 \]
Summing over i, and with $\alpha_i := \text{Tr}(B_i(X)_+)$, $\psi = \sum_{i=1}^n \alpha_i$, we get:

$$
\mathbb{E} \sum_{i=1}^n (\xi^T B_i(X) \xi)_+ \geq \sum_{i=1}^n \left(\alpha_i - \rho + \frac{2}{\pi} \sqrt{\frac{\alpha_i^2}{k} + \frac{\rho^2}{k-1}} \right) + \\
\geq \frac{1}{2} \left(\psi - n\rho + \frac{2}{\pi} \sqrt{\psi^2 + \frac{n^2 \rho^2}{k-1}} \right) + \\
\geq \frac{1}{\pi} \psi \quad (= \frac{1}{\pi} \mathbb{E}(\xi^T X \xi)),
$$

provided $\psi \geq n\rho$.

Quality estimate
Assuming $\psi \geq n \rho$:

- The previous bound implies that there exist $\xi \in \mathbb{R}^m$ such that

$$\sum_{i=1}^{n} (\xi^T B_i(X) \xi)_+ \geq \frac{\psi}{\pi} (\xi^T X \xi).$$

- Thus, with $u_i = 1$ if $\xi^T B_i(X) \xi > 0$, $u_i = 0$ otherwise, we obtain that there exist $\xi \in \mathbb{R}^m$ and $u \in [0, 1]^n$ such that

$$\xi^T \left(\sum_{i=1}^{n} u_i B_i(X) \right) \xi \geq \frac{\psi}{\pi} (\xi^T X \xi).$$
• With $z = X^{1/2} \xi$:

$$z^T \left(\sum_{i=1}^n u_i B_i \right) z \geq \frac{\psi}{\pi} \cdot (z^T z).$$

• We conclude that there exist $u \in [0, 1]^n$ such that

$$(\psi \geq \phi \geq) \lambda_{\text{max}} \left(\sum_{i=1}^n u_i B_i \right) \geq \frac{1}{\pi} \psi$$
When is condition $\psi \geq n\rho$ met?

Find a lower bound on ψ:

$$(\psi \geq) \phi = \max_X \sum_{i=1}^{n} (a_i^T X a_i - \rho)_+ : X \succeq 0, \; \text{Tr} \; X = 1$$

$$\geq \max_i a_i^T a_i - \rho \quad \text{(choose } X = a_j a_j^T / (a_j^T a_j), \text{ where } j := \arg \max_i a_i^T a_i)$$

Thus, condition $\psi \geq n\rho$ is met when $\rho \leq \frac{1}{n+1} \max_i a_i^T a_i \ldots$

\ldots Don’t forget we assumed $\rho < a_i^T a_i$ for every $i \ldots$
Theorem: Assume

\[\rho < \min \left(\min_{1 \leq i \leq n} \Sigma_{ii}, \frac{1}{n+1} \max_{1 \leq i \leq n} \Sigma_{ii} \right). \]

Then,

\[\frac{1}{\pi} \psi \leq \phi \leq \psi. \quad (3) \]
Theorem: Assume

\[\rho < \min \left(\min_{1 \leq i \leq n} \Sigma_{ii}, \frac{1}{n + 1} \max_{1 \leq i \leq n} \Sigma_{ii} \right). \]

Then,

\[\frac{1}{\pi} \psi \leq \phi \leq \psi. \] (4)

Corollary: Assume (WLOG) \(\Sigma_{11} \geq \ldots \geq \Sigma_{nn} \). If \(\Sigma \) satisfies

\[\forall p \in \{2, \ldots, n\} : \Sigma_{pp} < \frac{1}{p} \max_{i} \Sigma_{ii}, \]

Then (4) holds for every \(\rho < \Sigma_{22} \).
Outline

- Principal component analysis
- The sparse PCA problem
- New formulation and SDP relaxation
- Quality estimate
- *Sparsity in linear systems*
Sparse solutions of linear equations

Minimum cardinality problem:

\[\phi := \min \|x\|_0 : Ax = b \]

where

- \(m \leq n \), \(A = [a_1, \ldots, a_n] \in \mathbb{R}^{m \times n} \), \(b \in \mathbb{R}^m \)
- \(\|x\|_0 \) denotes the number of non-zero elements of \(x \)
The minimum cardinality problem

- Problem arises in a number of fields (compression, signal processing, etc)
- Problem is NP-hard
- A vast body of literature is attached to it

A classical approach: obtain a suboptimal solution by solving the LP

\[
\min \|x\|_1 : \ Ax = b
\]

In signal processing, approach is called "basis pursuit"
Some previous approaches

- **Convex approximation methods:**
 - Chen, Donoho (1994): basis pursuit
 - Tropp (2004-5): analyze l_1-norm approximation using QP duality

- **Bayesian methods:** Lewicki & Sejnowski (2000), Miller (2002)

- **Greedy methods:** e.g. Orthogonal Matching Pursuit, see Miller (2002)

- **Global optimization:** see Miller (2002)

- **Nonlinear optimization:** Rao, Kreutz-Delgado (1999)
A modified problem

We consider a slightly modified problem:

$$\phi(\sigma) := \min_{x} \|x\|_0 : \ Ax = b, \ \|x\|_2 \leq \sigma,$$

where $\sigma > 0$ is given.

- $\phi = \lim_{\sigma \to +\infty} \phi(\sigma)$
- Assume that A is full row rank, and that the above problem is feasible, i.e.

 $$b^T(AA^T)^{-1}b \leq \sigma^2$$

- Norm constraint often makes sense from a practical point of view.
A boolean SDP formulation

The problem can be formulated as

\[\phi(\sigma) = \min_{u,x} \mathbf{1}^T u : \ AD(u)y = b, \ \|y\|_2 \leq \sigma, \ u \in \{0,1\}^n, \]

where \(D(u) := \text{diag}(u) \), and \(x = D(u)y \)

Lemma: \(\exists \ y \in \mathbb{R}^n, \ \|y\|_2 \leq 1, \ By = b \iff B B^T \succeq b b^T \)

Thus

\[\phi(\sigma) = \min_u \mathbf{1}^T u : \ \sigma^2 A D(u)^2 A^T \succeq b b^T, \ u \in \{0,1\}^n \]

\[= \min_u \mathbf{1}^T u : \ \sigma^2 \sum_{i=1}^n u_i a_i a_i^T \succeq b b^T, \ u \in \{0,1\}^n \]
Relax the boolean constraint and obtain the lower bound

\[
\phi(\sigma) \geq \psi(\sigma) := \min_u 1^T u : \sigma^2 \sum_{i=1}^{n} u_i a_i a_i^T \succeq bb^T, \; u \in [0, 1]^n
\]

This an SDP, with *dual*:

\[
\psi(\sigma) = \max_{X \succeq 0} (b^T X b)/\sigma^2 - \sum_{i=1}^{n} (a_i^T X a_i - 1)_+
\]
An SOCP representation of the bound

The SDP bound can be expressed as

$$\psi(\sigma) = \psi(\sigma) := \min_u 1^T u : b^T \left(\sum_{i=1}^{n} u \sigma_i a_i a_i^T \right)^{-1} b \leq \sigma^2, \ u \in [0, 1]^n$$

Using QCQP duality, we obtain the equivalent representation

$$\psi(\sigma) = \max_{z, \mu \geq 0} 2b^T z - \mu \sigma^2 - \sum_{i=1}^{n} \left((a_i^T z)^2 / \mu - 1 \right)_+$$

- Above problem can be expressed as a \textit{(rotated cone) SOCP}
- As such, can be efficiently solved
We can also express the previous SOCP as the (non-convex) QCQP

\[
\psi(\sigma) = \max_{\xi} \frac{(b^T \xi)^2}{\sigma^2} - \sum_{i=1}^{n} ((a_i^T \xi)^2 - 1)_+
\]

For \(\sigma \to \infty\), the solution set to above problem converges to that of the LP

\[
\psi = \max_y b^T \xi : |a_i^T \xi| \leq 1, \quad i = 1, \ldots, n,
\]

which is the (dual of) the classical LP relaxation.
New formulations and bounds can be extended to other problems:

- **sparse solutions to linear inequalities:**

 \[\phi := \min \|x\|_0 \quad : \quad Ax \leq b \]

 (Hint: previous formulation is convex in \(b\) . . .)

- **penalized** versions, such as

 \[\phi := \min_{x} \|Ax - b\|_2^2 + \rho \|x\|_0 \]
Challenges

- Evaluate the quality of the SOCP bound
- Investigate the results for $\sigma \to \infty$
Wrap-up

- We investigated problems involving sparsity and linear systems
- We devised new formulations and corresponding SDP relaxations
- For the sparse PCA problem we obtained a quality estimate valid for small penalty ρ
- Refined results in

L. El Ghaoui, Eigenvalue Maximization in Sparse PCA,