NONPARAMETRIC ESTIMATION OF AN ADDITIVE MODEL WITH A LINK FUNCTION

by

Joel L. Horowitz
Northwestern University
Evanston, IL
USA
INTRODUCTION

• Problem: Estimate $H(x) = E(Y|X = x)$ under weak assumptions about its functional form when X is a continuous random variable.

• Fully nonparametric estimation is unattractive when X is multidimensional because of the curse of dimensionality.

• Dimension reduction methods reduce effective dimension of estimation problem and mitigate or eliminate curse of dimensionality.

• They make assumptions about the form of $H(x)$ that are stronger than those of a fully nonparametric model but weaker than those of a parametric model.
DIMENSION REDUCTION METHODS

• Semiparametric single-index model

• Additive model with known link function

\[
H(x) = F \left[\mu + \sum_{j=1}^{d} m_j(x^j) \right],
\]

where \(F \) is known, and \(\mu \) and \(m_j \)'s are unknown.

• Partially linear model with known link function (Robinson 1988, Golubev and Härdle 1997, Severini and Staniswalis 1994)

\[
E(Y \mid X = x, W = w) = G[\beta'x + f_w(w)],
\]

where \(G \) is known but \(\beta \) and \(f_w \) are not.

• Additive model with unknown link function

\[
H(x) = F \left[\sum_{j=1}^{d} m_j(x^j) \right],
\]

where \(F \) and the \(m_j \)'s are unknown.
PURPOSE OF THIS PAPER

Paper is concerned with estimating nonparametric additive model with known link function.

- Marginal integration estimator (Linton and Härdle 1996) has curse-of-dimensionality

 - Smoothness of the m_j’s must increase as dimension of X increases to achieve $n^{-2/5}$ rate of convergence of nonparametric estimator of the m_j’s.

- If F is identity function, this problem can be overcome by use of backfitting

 - Methods for achieving $n^{-2/5}$ rate of convergence with no curse of dimensionality not available with non-identity F.

- This paper develops method for avoiding curse of dimensionality in estimating nonparametric additive model with known link function.

 - Estimator is pointwise $n^{2/5}$-consistent and asymptotically normal when F and the m_j’s are twice differentiable, regardless of dimension of X.
MARGINAL INTEGRATION ESTIMATOR
(Linton and Härdle 1996)

- Define $G = F^{-1}$ and $H(x) = E(Y | X = x)$.

- Linton and Härdle (1996) write model in form

\[G[H(x^1, ..., x^d)] = \mu + m_1(x^1) + ... + m_d(x^d), \]

where $G = F^{-1}$ and $E[m_j(X^j)] = 0$.

- Therefore

\[\mu + m_1(x^1) = E G[H(x^1, X^2, ..., X^d)]. \]

- Estimate $m_1(x^1)$ up to additive constant by replacing H with kernel estimator and E with sample average.

- This creates curse-of-dimensionality effect because a d-dimensional nonparametric regression is needed to estimate H.

- More smoothness needed as d increases to insure bias and variance of full-dimensional estimator are sufficiently small.
SOLUTION TO PROBLEM

• Avoid curse of dimensionality by replacing kernel estimator with estimator that does not require full-dimensional nonparametric regression.

• Nonparametric series approximation can be used to impose additive structure from outset, thereby avoiding need for full-dimensional estimation.

• Getting pointwise rates of convergence and asymptotic normality with series estimator is difficult.

• Use two-step procedure to obtain estimator with tractable asymptotics:

 • Step 1: Use nonparametric series estimation to obtain pilot estimates \(\tilde{\mu}, \tilde{m}_1, \ldots, \tilde{m}_d \)

 • Step 2: Take one Newton step from pilot estimates toward local constant or local linear least squares estimator of (say) \(m_1 \)

• Second-stage estimator has structure of kernel estimator, so its asymptotic distribution can be obtained easily.
FURTHER MOTIVATION

- If μ and m_2, \ldots, m_d were known, could estimate $m_1(x^1)$ by (say) local nonlinear least squares:

$$\hat{m}_1(x^1) = \arg\min_{m_1} \sum_{i=1}^{n} \left\{ Y_i - F[\mu + m_1(x^1)] + m_2(X_i^2) + \ldots + m_d(X_i^d) \right\}^2 K_h(x^1 - X_i^1)$$

where $K_h(x^1 - X_i^1) = K[(x^1 - X_i^1) / h]$, K is kernel.

- Replace unknown μ and m_2, \ldots, m_d with pilot estimates to get kernel-like estimator of $m_1(x^1)$.

- Undersmooth pilot estimates to reduce bias

- Resulting $\hat{m}_1(x^1)$ is asymptotically equivalent to estimator that would be obtained if μ and m_2, \ldots, m_d were known.

- So there is (asymptotically) no penalty for not knowing μ and m_2, \ldots, m_d and no curse of dimensionality.
AVOIDING NONLINEAR OPTIMIZATION

- Nonparametric series estimation yields estimate \(\tilde{m}_1 \) of \(m_1 \).

- Avoid nonlinear optimization by taking one Newton step from pilot estimate toward solution of local least squares problem.

- Resulting estimator is asymptotically equivalent to solution of full nonlinear optimization.

- Define \(\tilde{m}_{-1}(x_{-1}) = \tilde{m}_2(x^2) + \ldots + \tilde{m}_d(x^d) \),

\[
S_{n1}(x^1, \tilde{m}) = \sum_{i=1}^{n} \left\{ Y_i - F[\tilde{\mu} + \tilde{m}_1(x^1) + \tilde{m}_{-1}(\tilde{X}_i)] \right\}^2 K_h(x^1 - X_i^1)
\]

\(S_{n1}'(x^1, \tilde{m}), S_{n1}''(x^1, \tilde{m}) \) are first and second derivatives of \(S_{n1} \) with respect to \(\tilde{m}_1 \).
SECON-D STAGE ESTIMATOR

• Second-stage estimator is

\[\hat{m}_1(x^1) = \bar{m}_1(x^1) - S'_{n1}(x^1, \bar{m}) / S''_{n1}(x^1, \bar{m}). \]
NONPARAMETRIC SERIES ESTIMATOR

• Define \(m(x) = m_1(x^1) + \ldots + m_d(x^d) \)

• Let support of \(X \) be \([-1, 1]^d\).

• Normalize \(m_j \)'s by \(\int_{-1}^{1} m_j(v)dv = 0 \) \((j = 1, \ldots, d)\).

• Let \(\{p_k : k = 1, 2, \ldots\} \) denote basis for smooth functions on \([-1, 1]\) that satisfy normalization condition and

\[
\int_{-1}^{1} p_k(v)dv = 0
\]

\[
\int_{-1}^{1} p_j(v)p_k(v)dv = \begin{cases}
1 & \text{if } j = k \\
0 & \text{otherwise}
\end{cases}
\]

\[
m_j(x^j) = \sum_{k=1}^{\infty} \theta_{jk} p_k(x^j); \quad j = 1, \ldots, d; \quad x^j \in [0, 1]
\]

• For any positive integer \(\kappa > 0 \) define

\[
P_\kappa(x) = [1, p_1(x^1), \ldots, p_\kappa(x^1), \ldots, p_1(x^d), \ldots, p_\kappa(x^d)]'
\]

• Then for \(\theta_\kappa \in \mathbb{R}^{\kappa d + 1} \), \(P_\kappa(x)\theta_\kappa \) is series approximation to \(\mu + m(x) \).
FIRST-STEP ESTIMATOR

• Let \(\{Y_i, X_i : i = 1, \ldots, n\} \) be random sample of \((Y, X)\)

• Let \(\hat{\theta}_{nk} \) be solution to

\[
\minimize_{\theta \in \Theta_\kappa} n^{-1} \sum_{i=1}^{n} \{Y_i - F[P_\kappa(X_i)'\theta]\}^2
\]

where \(\Theta_\kappa \) is compact parameter set.

• Series estimator of \(\mu + m(x) \) is

\[
\tilde{\mu} + \tilde{m}(x) = P_\kappa(x)'\hat{\theta}_{nk},
\]

where \(\tilde{\mu} \) is first component of \(\hat{\theta}_{nk} \).

• First-step estimator of \(m_j(x^j) \) is product of

\[
[p_1(x^j), \ldots, p_\kappa(x^j)]
\]

with appropriate subvector of \(\hat{\theta}_{nk} \).
ASSUMPTIONS

• Data are random sample of \((Y, X)\), support of \(X\) is
\[\mathcal{X} \equiv [-1,1]^d, \] and \(E(Y \mid X = x) = F[\mu + m(x)]\).

• Density of \(X\) is bounded, bounded away from zero, and twice differentiable.

• Set \(U \equiv Y - F[\mu + m(X)]\). Then:
 - \(Var(U \mid X = x)\) is bounded and bounded away from zero.
 - \(U\) has finite unconditional moments of all orders
 - The \(m_j\)'s are bounded and twice continuously differentiable

Only two derivatives needed regardless of dimension of \(X\).

• \(F''\) satisfies Lipschitz condition

\[|F''(\nu_2) - F''(\nu_1)| \leq C |\nu_2 - \nu_1|^s \]

for some \(s > 5/7\).

• Conditions insuring that covariance matrix of \(\hat{\theta}_{nk}\)'s is bounded and non-singular.
MORE ASSUMPTIONS

• Basis functions satisfy

\[\sup_{x \in \mathcal{X}} \| P_\kappa (x) \| = O(\kappa^{1/2}) \]

\[\sup_{x \in \mathcal{X}} | \mu + m(x) - P_\kappa (x)' \theta_{\kappa 0} | = O(\kappa^{-2}) \]

for some \(\theta_{\kappa 0} \in \Theta_\kappa \)

These conditions are satisfied by spline and (for periodic functions) Fourier bases.

• Smoothing parameters satisfy:

 • \(\kappa = C_\kappa n^{4/15 + \nu} \) for some \(\nu < 1/30 \)

 • \(h_n = C_h n^{-1/5} \)

The \(L_2 \) rate of convergence of series estimator is maximized by setting \(\kappa \propto n^{1/5} \), so the series estimator here is undersmoothed to reduce asymptotic bias.

• Kernel function \(K \) of second-stage estimator is a bounded, continuous probability density function on \([-1,1]\) and is symmetrical about 0.
MAIN RESULTS: FIRST-STAGE ESTIMATOR

- Uniform consistency:

\[
\sup_{x \in \mathcal{X}} |\tilde{m}(x) - m(x)| = O_p(\kappa / n^{1/2} + \kappa^{-3/2})
\]

- Decomposition: Define

\[
Q_\kappa = E\{F'[\mu + m(X)]^2 P_\kappa(X)P_\kappa'(X)\}
\]

Then

\[
\hat{\theta}_{n\kappa} - \theta_{\kappa 0} = n^{-1} Q_\kappa^{-1} \sum_{i=1}^n F'[\mu + m(X_i)]P_\kappa(X_i)U_i
\]

\[
+ n^{-1} Q_\kappa^{-1} \sum_{i=1}^n F'[\mu + m(X_i)]^2 P_\kappa(X_i)b_\kappa(X_i) + R_n
\]

where \(\|R_n\| = O_p(\kappa^{3/2} / n + n^{-1/2})\)
MAIN RESULTS: SECOND-STAGE ESTIMATOR

• Asymptotic representation: Define

\[D(x^1) = \text{plim}_{n \to \infty} S''_{n1}(x^1, \tilde{m}) \]

Then

\[(nh_n)^{1/2} [\hat{m}_1(x^1) - m_1(x^1)] = \]

\[-(nh_n)^{1/2} S'_{n1}(x^1, m) / D(x^1) + o_p(1) \]

This is representation that would be obtained by linearizing first-order condition for local least-squares estimation of \(m_1 \) with known \(m_2, \ldots, m_d \).

So asymptotically there is no penalty for not knowing \(m_2, \ldots, m_d \).

Structure of right-hand side is same as with kernel estimator.
RESULTS (cont.)

- Asymptotic normality

\[n^{2/5} [\hat{m}_1(x^1) - m_1(x^1)] \rightarrow^d N[\beta_1(x^1), V_1(x^1)] \]

This holds when the \(m_j \)'s are twice continuously differentiable, regardless of dimension of \(X \).

So there is no curse of dimensionality.

- If \(j \neq 1 \), then \(n^{2/5} [\hat{m}_1(x^1) - m_1(x^1)] \) and \(n^{2/5} [\hat{m}_j(x^j) - m_j(x^j)] \) are asymptotically independently normally distributed.
INTUITION FOR SECOND-STAGE RESULT

• Second-stage estimator is

\[\hat{m}_1(x^1) = \tilde{m}_1(x^1) - S'_{n1}(x^1, \tilde{m}) / S''_{n1}(x^1, \tilde{m}). \]

• This can be written:

\[(nh_n)^{1/2} [\hat{m}_1(x^1) - m_1(x^1)] = \]

\[= (nh_n)^{1/2} [\tilde{m}_1(x^1) - m_1(x^1)] \]

\[- (nh_n)^{1/2} S'_{n1}(x^1, \tilde{m}) / D(x^1) + o_p(1). \]

• Use Taylor series approximation to write

\[(nh_n)^{1/2} S'_{n1}(x^1, \tilde{m}) = \]

\[(nh_n)^{1/2} S'_{n1}(x^1, m) + T_{n1} + T_{n2} + o_p(1) \]
INTUITION (cont.)

- \(T_{n1} = D(x^1)(nh_n)^{1/2}[\hat{m}_1(x^1) - m_1(x^1)] + o_p(1) \)

- So

\[(nh_n)^{1/2}[\hat{m}_1(x^1) - m_1(x^1)] = \]

\[-(nh_n)^{1/2}S'_n(x^1, m)/D(x^1) + T_{n2} + o_p(1) \]

- \(T_{n2} \) consists of
 - Bias term arising from asymptotic bias of \(\hat{m}_1 \)
 - Sum of mean-zero stochastic terms arising from random component of \(\hat{\theta}_{nk} - \theta_{k0} \)

- Because first-stage estimator is undersmoothed

\[(nh_n)^{1/2}[\text{Bias Term}] = o_p(1) \]

- Contribution of bias term to \(T_{n2} \) is asymptotically negligible.
INTUITION (cont.)

- Stochastic terms have slower than $n^{-2/5}$ rates of convergence but are averaged in T_{n2}.

- First-stage estimator has no curse of dimensionality, so rate of convergence of variance of stochastic term does not increase with increasing dimension of X.

- Averaged stochastic term converges faster than $n^{-2/5}$.

- So contribution of stochastic term to T_{n2} is negligible.

- Consequently, T_{n2} is asymptotically negligible.
BANDWIDTH SELECTION

• Asymptotic integrated mean-square error of \hat{m}_1 is

$$AIMSE_1 = n^{4/5} \int_{-1}^{1} w(x^1)[\beta_1(x^1)^2 + V_1(x^1)]dx^1,$$

where w is a weight function.

• $AIMSE_1$ minimized by setting $h = C_{h1}n^{-1/5}$, where

$$C_{h1} = \left[\frac{1}{4} \frac{\int_{-1}^{1} w(x^1)\tilde{V}_1(x^1)dx^1}{\int_{-1}^{1} w(x^1)\tilde{\beta}_1(x^1)^2dx^1} \right]^{1/5},$$

$\tilde{\beta}_1(x^1) = \beta_1(x^1)/C_h^2$ and $\tilde{V}_1(x^1) = C_hV_1(x^1)$.

• Plug-in estimator of C_{h1} can be obtained by replacing $\tilde{\beta}_1$ and \tilde{V}_1 with kernel estimates.

• The asymptotically optimal bandwidths for all the m_j's can be estimated simultaneously by penalized least squares.

• This minimizes empirical analog of asymptotic squared error:
MONTE CARLO EXPERIMENTS

- Compare finite-sample performance of new estimator with that of Linton and Härdle (1996)

- New estimator implemented using local constant and local linear smoothing in second stage.

- Experiments carried out with \(d = 2 \) and \(d = 5 \).
 - L-H estimator is \(O_p(n^{-2/5}) \) if \(d = 2 \), not \(d = 5 \).

- Sample size is \(n = 500 \)

- With \(d = 2 \) estimate \(m_1 \) and \(m_2 \) in logit model
 - \(P(Y = 1 \mid X = x) = L[m_1(x^1) + m_2(x^2)] \)
 - \(L(v) = e^v/(1 + e^v) \)
 - \(m_1(x^1) = \sin(\pi x^1) \)
 - \(m_2(x^2) = \Phi(3x^2) \), where \(\Phi \) is normal CDF

- With \(d = 5 \) estimate \(m_1 \) and \(m_2 \) in logit model
 - \(P(Y = 1 \mid X = x) = L[m_1(x^1) + m_2(x^2) + \sum_{j=3}^{5} x^j] \)
 - Components of \(X \) are independently \(U[-1,1] \).
MONTE CARLO EXPERIMENTS (cont.)

- B-splines used for first-stage series estimator

- Second-order kernel used for second-stage estimator

- Tuning parameters chosen to minimize empirical integrated mean-square errors.

- 1000 replications with 2-stage estimator but only 500 with Linton-Härdle estimator
RESULTS

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Empirical IMSE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f_1</td>
<td>f_2</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>$d = 2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FHS</td>
<td>.116</td>
<td>.015</td>
</tr>
<tr>
<td>2-Stage LC</td>
<td>.052</td>
<td>.015</td>
</tr>
<tr>
<td>2-Stage LL</td>
<td>.052</td>
<td>.023</td>
</tr>
<tr>
<td>$d = 5$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FHS</td>
<td>.145</td>
<td>.019</td>
</tr>
<tr>
<td>2-Stage LC</td>
<td>.060</td>
<td>.018</td>
</tr>
<tr>
<td>2-Stage LL</td>
<td>.057</td>
<td>.029</td>
</tr>
</tbody>
</table>

- Local constant and local linear estimators both dominate Linton-Härdle for estimating f_1

- For estimating f_2 Local constant and Linton-Härdle estimators have roughly same IMSE

- Local linear estimator is worse
CONCLUSIONS

- Paper has considered additive model with known link function

\[E(Y \mid X = x) = F[\mu + m^1(x^1) + \ldots + m^j(x^j)] \]

- Marginal integration estimator of Linton and Härdle (1996) has curse of dimensionality

- Backfitting method of Mammen et al. (1999) avoids curse of dimensionality if \(F \) is identity function

- This paper has proposed two-step method for avoiding curse of dimensionality with non-identity link function.
 - First step uses nonparametric series estimator that imposes additive structure
 - Second step takes a Newton step from series estimate toward a local least squares estimator.
 - Second-stage estimator has structure of kernel estimator and is pointwise asymptotically normal with \(n^{-2/5} \) rate of convergence regardless of dimension of \(X \).